Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Heliyon ; 10(9): e29787, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707313

ABSTRACT

Strawberries are a nutrient dense food rich in vitamins, minerals, non-nutrient antioxidant phenolics, and fibers. Strawberry fiber bioactive structures are not well characterized and limited information is available about the interaction between strawberry fiber and phenolics. Therefore, we analyzed commercial strawberry pomace in order to provide a detailed carbohydrate structural characterization, and to associate structures with functions. The pomace fraction, which remained after strawberry commercial juice extraction, contained mostly insoluble (49.1 % vs. 5.6 % soluble dietary fiber) dietary fiber, with pectin, xyloglucan, xylan, ß-glucan and glucomannan polysaccharides; glucose, fructose, xylose, arabinose, galactose, fucose and galacturonic acid free carbohydrates; protein (15.6 %), fat (8.34 %), and pelargonidin 3-glucoside (562 µg/g). Oligosaccharides from fucogalacto-xyloglucan, methyl-esterified rhamnogalacturonan I with branched arabinogalacto-side chains, rhamnogalacturonan II, homogalacturonan and ß-glucan were detected by MALDI-TOF MS, NMR and glycosyl-linkage analysis. Previous reports suggest that these oligosaccharide and polysaccharide structures have prebiotic, bacterial pathogen anti-adhesion, and cholesterol-lowering activity, while anthocyanins are well-known antioxidants. A strawberry pomace microwave acid-extracted (10 min, 80 °C) fraction had high molar mass (2376 kDa) and viscosity (3.75 dL/g), with an extended rod shape. A random coil shape, that was reported previously to bind to phenolic compounds, was observed for other strawberry microwave-extracted fractions. These strawberry fiber structural details suggest that they can thicken foods, while the polysaccharide and polyphenol interaction indicates great potential as a multiple-function bioactive food ingredient important for gut and metabolic health.

2.
Data Brief ; 46: 108845, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36624764

ABSTRACT

The datasets presented in this article represent detailed NMR spectral analyses on red beet fiber, including the pomace, water-soluble and water-insoluble fractions, as well as the acid-extracted pectin. The samples were solvated in deuterium oxide and investigated by 1D-1H, 1D-13C NMR, and multiple 2D-NMR experiments, including gCOSY, zTOCSY, HSQC, HMBC, HSQCTOCSY, and H2BC. The NMR chemical shifts, coupling constants and spin-systems were identified for the major carbohydrate residues in each sample. This article provides additional data related to the research article "Structural characterization of red beet fiber and pectin" published in Food Hydrocolloids [1].

3.
J Am Chem Soc ; 133(20): 7824-36, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21534528

ABSTRACT

Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(•)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(•)) results in the formation of FADH(-) and (306)Trp(•). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(•). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase/metabolism , Escherichia coli/enzymology , Flavin-Adenine Dinucleotide/metabolism , Tryptophan/metabolism , Electron Transport , Hydrogen-Ion Concentration , Kinetics , Photochemistry , Protons
4.
J Phys Chem A ; 114(40): 10897-905, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20860352

ABSTRACT

The aromatic amino acid tryptophan plays an important role in protein electron-transfer and in enzyme catalysis. Tryptophan is also used as a probe of its local protein environment and of dynamic changes in this environment. Raman spectroscopy of tryptophan has been an important tool to monitor tryptophan, its radicals, and its protein environment. The proper interpretation of the Raman spectra requires not only the correct assignment of Raman bands to vibrational normal modes but also the correct identification of the Raman bands in the spectrum. A significant amount of experimental and computational work has been devoted to this problem, but inconsistencies still persist. In this work, the Raman spectra of indole, 3-methylindole (3MI), tryptophan, and several of their isotopomers have been measured to determine the isotope shifts of the Raman bands. Density functional theory calculations with the B3LYP functional and the 6-311+G(d,p) basis set have been performed on indole, 3MI, 3-ethylindole (3EI), and several of their isotopomers to predict isotope shifts of the vibrational normal modes. Comparison of the observed and predicted isotope shifts results in a consistent assignment of Raman bands to vibrational normal modes that can be used for both assignment and identification of the Raman bands. For correct assignments, it is important to determine force field scaling factors for each molecule separately, and scaling factors of 0.9824, 0.9843, and 0.9857 are determined for indole, 3MI, and 3EI, respectively. It is also important to use more than one parameter to assign vibrational normal modes to Raman bands, for example, the inclusion of isotope shifts other than those obtained from H/D-exchange. Finally, the results indicate that the Fermi doublet of indole may consist of just two fundamentals, whereas one fundamental and one combination band are identified for the Fermi resonance that gives rise to the doublet in 3MI and tryptophan.


Subject(s)
Indoles/chemistry , Skatole/chemistry , Spectrum Analysis, Raman/methods , Tryptophan/chemistry , Carbon Isotopes/chemistry , Computer Simulation , Deuterium/chemistry , Models, Chemical , Molecular Structure , Nitrogen Isotopes/chemistry , Skatole/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL