ABSTRACT
BACKGROUND: Recently, molecular tumour boards (MTBs) have been integrated into the clinical routine. Since their benefit remains debated, we assessed MTB outcomes in the Comprehensive Cancer Center Ostbayern (CCCO) from 2019 to 2021. METHODS AND RESULTS: In total, 251 patients were included. Targeted sequencing was performed with PCR MSI-evaluation and immunohistochemistry for PD-L1, Her2, and mismatch repair enzymes. 125 treatment recommendations were given (49.8%). High-recommendation rates were achieved for intrahepatic cholangiocarcinoma (20/30, 66.7%) and gastric adenocarcinoma (10/16, 62.5%) as opposed to colorectal cancer (9/36, 25.0%) and pancreatic cancer (3/18, 16.7%). MTB therapies were administered in 47 (18.7%) patients, while 53 (21.1%) received alternative treatment regimens. Thus 37.6% of recommended MTB therapies were implemented (47/125 recommendations). The clinical benefit rate (complete + partial + mixed response + stable disease) was 50.0% for MTB and 63.8% for alternative treatments. PFS2/1 ratios were 34.6% and 16.1%, respectively. Significantly improved PFS could be achieved for m1A-tier-evidence-based MTB therapies (median 6.30 months) compared to alternative treatments (median 2.83 months; P = 0.0278). CONCLUSION: The CCCO MTB yielded a considerable recommendation rate, particularly in cholangiocarcinoma patients. The discrepancy between the low-recommendation rates in colorectal and pancreatic cancer suggests the necessity of a weighted prioritisation of entities. High-tier recommendations should be implemented predominantly.
Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Pancreatic Neoplasms , Humans , Bile Ducts, Intrahepatic , Pancreatic NeoplasmsABSTRACT
A distinct group of colorectal carcinomas (CRCs) referred to as the "CpG island methylator phenotype" (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status.
Subject(s)
Colorectal Neoplasms/genetics , CpG Islands , DNA Methylation , Microsatellite Instability , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers, Tumor , DNA Copy Number Variations , Female , Humans , Male , Middle Aged , PhenotypeABSTRACT
Deficient mismatch repair (dMMR) and microsatellite instability (MSI) have therapeutic relevance not only for colorectal carcinomas but also for carcinomas of other entities (endometrium, biliary tract, pancreas). In order to guarantee the knowledge and good technical quality necessary for adequate implementation of the corresponding analyses in pathology institutes, the Pathology Quality Assurance Initiative ("Die Qualitätssicherung-Initiative Pathologie") has been offering proficiency tests (PT) for years. It has been shown for the dMMR PT that various antibody clones from different manufacturers provide comparable results in immunohistological examinations, except for slight variations. The difficulty lies in the staining protocol (intensity of staining) and the interpretation of the staining results. The molecular pathological MSI PT has shown a positive trend at a high-quality level over the last three years. Success rates increased from 89 (2018) to 97% (2019/2020). The choice of assay, whether commercial or in-house tests with the designated cutoffs for this purpose, has not been shown to have a significant impact on the PTs in the selected EQA samples.
Subject(s)
Colorectal Neoplasms , Microsatellite Instability , DNA Mismatch Repair , Female , HumansABSTRACT
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSIH colorectal cancer (CRC). Further indications, such as dMMR/MSIH endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSIH testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Subject(s)
Colorectal Neoplasms , Microsatellite Instability , DNA Mismatch Repair , Humans , Immunohistochemistry , PrognosisABSTRACT
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSIH colorectal cancer (CRC). Further indications, such as dMMR/MSIH endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSIH testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Subject(s)
Microsatellite Instability , Neoplasms/drug therapy , Neoplasms/genetics , DNA Mismatch Repair , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunohistochemistry , PrognosisABSTRACT
Gene fusions involving the three neurotrophic tyrosine receptor kinase genes NTRK1, NTRK2, or NTRK3 were identified as oncogenic drivers in many cancer types. Two small molecule inhibitors have been tested in clinical trials recently and require the detection of a NTRK fusion gene prior to therapeutic application. Fluorescence in situ hybridization (FISH) and targeted next-generation sequencing (tNGS) assays are commonly used for diagnostic profiling of gene fusions. In the presented study we applied an external quality assessment (EQA) scheme in order to investigate the suitability of FISH and RNA-/DNA-based tNGS for detection of NTRK fusions in a multinational and multicentric ring trial. In total 27 participants registered for this study. Nine institutions took part in the FISH-based and 18 in the NGS-based round robin test, the latter additionally subdivided into low-input and high-input NGS methods (regarding nucleic acid input). Regardless of the testing method applied, all participants received tumor sections of 10 formalin-fixed and paraffin-embedded (FFPE) tissue blocks for in situ hybridization or RNA/DNA extraction, and the results were submitted via an online questionnaire. For FISH testing, eight of nine (88.8%) participants, and for NGS-based testing 15 of 18 (83.3%) participants accomplished the round robin test successfully. The overall high success rate demonstrates that FISH- and tNGS-based NTRK testing can be well established in a routine diagnostic setting. Complementing this dataset, we provide an updated in silico analysis on the coverage of more than 150 NTRK fusion variants by several commercially available RNA-based tNGS panels.
Subject(s)
Biomarkers, Tumor/genetics , Genetic Testing/methods , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , RNA-Seq/methods , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Genetic Testing/standards , Humans , In Situ Hybridization, Fluorescence/methods , Neoplasms/diagnosis , RNA-Seq/standards , Sensitivity and Specificity , Tissue Preservation/methodsABSTRACT
NTRK fusions involving three neurotrophic tyrosine receptor kinase genes NTRK1, NTRK2, and NTRK3 and a variety of fusion partners were identified as oncogenic drivers across many cancer types. Drugs that target the chimeric protein product require the identification of the underlying gene fusion. This advocates the diagnostic use of molecular assays ranging from fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction (RT-PCR)/Sanger approaches to targeted next-generation sequencing (NGS). Immunohistochemistry may be used as a screening tool and adjunct diagnostic assay in this context. Although FISH and RT-PCR/Sanger approaches are widely adopted in routine diagnostics, current experience with targeted RNA-based NGS is limited. Here, we report on the analysis of major assays (TruSight TST170 and TruSight RNA Fusion [Illumina]; Archer FusionPlex Solid Tumor, Archer FusionPlex Lung, and Archer FusionPlex Oncology [Archer]; Oncomine Comprehensive Assay v3 RNA and Oncomine Focus RNA [Thermo Fisher Scientific]) that are commercially available. The data set includes performance results of a multicentric comparative wet-lab study as well as an in silico analysis on the ability to detect the broad range of NTRK fusions reported until now. A test algorithm that reflects assay methodology is provided. This data will support implementation of targeted RNA sequencing in routine diagnostics and inform screening and testing strategies that have been brought forward.
Subject(s)
Biomarkers, Tumor , Genetic Testing , High-Throughput Nucleotide Sequencing , Receptors, Nerve Growth Factor/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Clinical Decision-Making , Disease Management , Female , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Infant , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Nerve Growth Factor/metabolism , Reproducibility of Results , Workflow , Young AdultSubject(s)
Desmoplastic Small Round Cell Tumor , Neoplasms , Humans , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/therapy , Desmoplastic Small Round Cell Tumor/pathology , Peritoneum/pathology , Gene Fusion , Oncogene Proteins, Fusion/genetics , WT1 Proteins/geneticsSubject(s)
Bone Neoplasms/genetics , Hemangioma/genetics , Proto-Oncogene Proteins c-fos/genetics , Tristetraprolin/genetics , Vascular Neoplasms/genetics , Adult , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Diagnosis, Differential , Epithelioid Cells/pathology , Gene Fusion , Hemangioma/diagnostic imaging , Hemangioma/pathology , Hemorrhage/diagnostic imaging , Hemorrhage/pathology , Humans , Immunohistochemistry , Male , Tomography, X-Ray Computed , Vascular Neoplasms/diagnostic imaging , Vascular Neoplasms/pathologyABSTRACT
Seborrheic keratosis (SK) represents a frequent epidermal skin tumor. Although lacking a malignant potential, these tumors reveal multiple oncogenic mutations. A previous study identified activating mutations in 89% of SK, particularly in FGFR3 and PIK3CA genes. The aim of this study was to identify further oncogenic mutations in human SK. Therefore, we screened for mutations in EGFR, FGFR2, PIK3R1, HRAS, KRAS, and NRAS genes using both Sanger sequencing of selected exons and a multiplex SNaPshot assay in 58 SK of 14 patients. We identified a somatic EGFR p.L858R mutation in 1 SK. Furthermore, the HRAS mutations p.G13R (2/58 SK) and p.Q61L (2/58 SK) were found. These mutations have not been described in human SK yet. In addition, 1 SK revealed the KRAS p.G12V mutation, which has already been reported in SK. No mutations were detected in FGFR2, PIK3R1, and NRAS genes. The results of this study suggest that activating mutations of EGFR, HRAS, and KRAS contribute to the pathogenesis of human SK, although at a lower frequency than FGFR3 and PIK3CA mutations. FGFR2, PIK3R1, and NRAS mutations obviously do not have a significant role in the development of SK.
Subject(s)
Biomarkers, Tumor/genetics , ErbB Receptors/genetics , Keratosis, Seborrheic/genetics , Mutation , Oncogenes , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Adult , Aged , Aged, 80 and over , Class Ia Phosphatidylinositol 3-Kinase , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Receptor, Fibroblast Growth Factor, Type 2/geneticsABSTRACT
HPV infection is considered as an independent risk factor for head and neck squamous cell carcinomas (HNSCC). Due to highly variable prevalence results in numerous studies, it is, however, difficult to estimate the relevance of HPV infection as risk factor for a specific patient collective. This study aimed to elucidate the disparities of HPV prevalence by analyzing socioeconomically and regionally different patient collectives. Two age, gender, stage and tumor location matched cohorts of 18 private health insured (PHIP) and 16 statutory health insured patients (SIP) suffering from an oropharyngeal squamous cell carcinoma (OSCC) and treated at a university hospital were screened for p16 overexpression and HPV infection by immunohistochemistry and PCR. In addition 85 HNSCC patients of an otolaryngology private practice (PPP) in a rural area were screened for p16 overexpression and positive cases were tested for HPV infection. HPV prevalence was 72.2% in the PHIP collective in comparison to 25.0% (p = 0.015) in the SIP collective with a significantly improved 5-year overall survival (p = 0.003) of the PHIP collective. The total HPV prevalence of PPP group was 7.1% with the highest infection rate in tonsillar carcinomas (33.3%) and a larger percentage of female patients in the HPV positive group (p = 0.037). This study shows that variable HPV infection rates in HNSCC can be caused by the selection of particular patient collectives, which suggest taking socioeconomic and regional factors into account for a decision on HPV testing, if it is not performed on a routine basis.
Subject(s)
Carcinoma, Squamous Cell/epidemiology , Head and Neck Neoplasms/epidemiology , Human papillomavirus 16/genetics , Oropharyngeal Neoplasms/epidemiology , Papillomavirus Infections/epidemiology , Tongue Neoplasms/epidemiology , Tonsillar Neoplasms/epidemiology , Age Factors , Aged , Alcohol Drinking/epidemiology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology , Cohort Studies , Cyclin-Dependent Kinase Inhibitor p16 , Female , Genes, p16 , Geography , Germany/epidemiology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/virology , Humans , Immunohistochemistry , Insurance, Health , Male , Middle Aged , Multivariate Analysis , Neoplasm Proteins/metabolism , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/virology , Papillomavirus Infections/virology , Polymerase Chain Reaction , Prevalence , Proportional Hazards Models , Risk Factors , Rural Population , Sex Factors , Smoking/epidemiology , Socioeconomic Factors , Squamous Cell Carcinoma of Head and Neck , Tongue Neoplasms/genetics , Tongue Neoplasms/virology , Tonsillar Neoplasms/genetics , Tonsillar Neoplasms/virologyABSTRACT
This study describes the external quality assessment (EQA) scheme for molecular testing of RET alterations in non-small cell lung cancer (NSCLC), medullary thyroid carcinomas (MTC), and non-MTC. The lead panel institute and Quality Assurance Initiative in Pathology (Qualitätssicherungs-Initiative Pathologie [QuIP] GmbH) selected formalin-fixed paraffin-embedded (FFPE) tissue from MTC for RET mutation testing by next-generation sequencing (NGS) methods and FFPE tissue from NSCLC and non-MTC for RET gene fusion testing using either in situ hybridisation (ISH) or NGS methods, forming 3 sub-schemes of the EQA scheme. Tissue material underwent an internal validation phase followed by an external testing phase. The internal validation phase served as a cross-validation step conducted by panel institutes. In the external testing phase, the number of participating institutes in the RET point mutation sub-scheme, RET fusion (ISH) sub-scheme, and RET fusion (NGS) sub-scheme was 32, 24, and 38, respectively. The reported success rates for external testing were 96.0%, 89.5%, and 93.5% for the RET point mutation, the ISH RET fusion, and the NGS RET fusion EQA sub-schemes, respectively. These findings confirm the reliability of the NGS method in detecting RET alterations and align with current screening recommendations. Overall, 31 institutes were certified for RET point mutation testing by NGS methods, 22 institutes were certified for RET fusion testing by ISH, and 36 institutes were certified for RET fusion testing by NGS methods. Results can be employed to inform real-world diagnostic decisions in Germany, Austria, and Switzerland.
Subject(s)
Carcinoma, Neuroendocrine , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Mutation , Proto-Oncogene Proteins c-ret , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins c-ret/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/diagnosis , Laboratory Proficiency Testing , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Reproducibility of Results , DNA Mutational Analysis/methods , Gene Fusion , In Situ Hybridization/methodsABSTRACT
Insertion mutations in exon 20 of the epidermal growth factor receptor gene (EGFR exon20ins) are rare, heterogeneous alterations observed in non-small cell lung cancer (NSCLC). With a few exceptions, they are associated with primary resistance to established EGFR tyrosine kinase inhibitors (TKIs). As patients carrying EGFR exon20ins may be eligible for treatment with novel therapeutics-the bispecific antibody amivantamab, the TKI mobocertinib, or potential future innovations-they need to be identified reliably in clinical practice for which quality-based routine genetic testing is crucial. Spearheaded by the German Quality Assurance Initiative Pathology two international proficiency tests were run, assessing the performance of 104 participating institutes detecting EGFR exon20ins in tissue and/or plasma samples. EGFR exon20ins were most reliably identified using next-generation sequencing (NGS). Interestingly, success rates of institutes using commercially available mutation-/allele-specific quantitative (q)PCR were below 30% for tissue samples and 0% for plasma samples. Most of these mutation-/allele-specific (q)PCR assays are not designed to detect the whole spectrum of EGFR exon20ins mutations leading to false negative results. These data suggest that NGS is a suitable method to detect EGFR exon20ins in various types of patient samples and is superior to the detection spectrum of commercially available assays.
Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Humans , ErbB Receptors/genetics , High-Throughput Nucleotide Sequencing/methods , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Laboratory Proficiency Testing , Antibodies, Bispecific/therapeutic use , Mutagenesis, Insertional , Protein Kinase Inhibitors/therapeutic useABSTRACT
While cell-free liquid biopsy (cfLB) approaches provide simple and inexpensive disease monitoring, cell-based liquid biopsy (cLB) may enable additional molecular genetic assessment of systemic disease heterogeneity and preclinical model development. We investigated 71 blood samples of 62 patients with various advanced cancer types and subjected enriched circulating tumor cells (CTCs) to organoid culture conditions. CTC-derived tumoroid models were characterized by DNA/RNA sequencing and immunohistochemistry, as well as functional drug testing. Results were linked to molecular features of primary tumors, metastases, and CTCs; CTC enumeration was linked to disease progression. Of 52 samples with positive CTC counts (≥1) from eight different cancer types, only CTCs from two salivary gland cancer (SGC) patients formed tumoroid cultures (P = 0.0005). Longitudinal CTC enumeration of one SGC patient closely reflected disease progression during treatment and revealed metastatic relapse earlier than clinical imaging. Multiomics analysis and functional in vitro drug testing identified potential resistance mechanisms and drug vulnerabilities. We conclude that cLB might add a functional dimension (to the genetic approaches) in the personalized management of rare, difficult-to-treat cancers such as SGC.
ABSTRACT
PURPOSE: Providing patient access to precision oncology (PO) is a major challenge of clinical oncologists. Here, we provide an easily transferable model from strategic management science to assess the outreach of a cancer center. METHODS: As members of the German WERA alliance, the cancer centers in Würzburg, Erlangen, Regensburg and Augsburg merged care data regarding their geographical impact. Specifically, we examined the provenance of patients from WERA´s molecular tumor boards (MTBs) between 2020 and 2022 (n = 2243). As second dimension, we added the provenance of patients receiving general cancer care by WERA. Clustering our catchment area along these two dimensions set up a four-quadrant matrix consisting of postal code areas with referrals towards WERA. These areas were re-identified on a map of the Federal State of Bavaria. RESULTS: The WERA matrix overlooked an active screening area of 821 postal code areas - representing about 50 % of Bavaria´s spatial expansion and more than six million inhabitants. The WERA matrix identified regions successfully connected to our outreach structures in terms of subsidiarity - with general cancer care mainly performed locally but PO performed in collaboration with WERA. We also detected postal code areas with a potential PO backlog - characterized by high levels of cancer care performed by WERA and low levels or no MTB representation. CONCLUSIONS: The WERA matrix provided a transparent portfolio of postal code areas, which helped assessing the geographical impact of our PO program. We believe that its intuitive principle can easily be transferred to other cancer centers.
Subject(s)
Health Services Accessibility , Medical Oncology , Neoplasms , Precision Medicine , Humans , Germany , Health Services Accessibility/organization & administration , Neoplasms/therapy , Medical Oncology/organization & administration , Cancer Care Facilities/organization & administration , Rural PopulationABSTRACT
DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p < 0.001). Consistently, MSI-H CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC.
Subject(s)
Cell Proliferation , Colorectal Neoplasms/genetics , DNA Methylation , Dual-Specificity Phosphatases/genetics , Microsatellite Instability , Mitogen-Activated Protein Kinase Phosphatases/genetics , Apoptosis , Blotting, Western , Colon/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dual-Specificity Phosphatases/metabolism , Humans , Immunoenzyme Techniques , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mutation/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Rectum/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , ras Proteins/geneticsABSTRACT
BACKGROUND: Activating RAS mutations in the germline cause rare developmental disorders such as Costello syndrome. Somatic RAS mutations are found in approximately 30% of human cancers. Keratinocytic epidermal nevi (KEN) represent benign congenital skin lesions arranged along Blaschko's lines. A subgroup of KEN is caused by hotspot oncogenic FGFR3 and PIK3CA mutations in mosaicism, but the majority lack these mutations. METHODS: This study screened 72 KEN for activating mutations in RAS genes and other oncogenes. RESULTS: Activating RAS mutations were identified in 28/72 (39%) of KEN. HRAS was the most commonly affected oncogene (86%), with the HRAS p.G13R substitution representing a new hotspot mutation. CONCLUSION: These results indicate that activating RAS somatic mutations leading to mosaicism result in benign KEN of the skin. Given the prevalence of KEN, mosaic HRAS mutations appear to be more common in patients than germline ones. These findings identify KEN as a mosaic RASopathy and lend further support to the notion that genetic mosaicism is an important contributor to disease.