Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Publication year range
1.
Clin Infect Dis ; 78(Supplement_2): S153-S159, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662699

ABSTRACT

BACKGROUND: Control of schistosomiasis (SCH) relies on the regular distribution of preventive chemotherapy (PC) over many years. For the sake of sustainable SCH control, a decision must be made at some stage to scale down or stop PC. These "stopping decisions" are based on population surveys that assess whether infection levels are sufficiently low. However, the limited sensitivity of the currently used diagnostic (Kato-Katz [KK]) to detect low-intensity infections is a concern. Therefore, the use of new, more sensitive, molecular diagnostics has been proposed. METHODS: Through statistical analysis of Schistosoma mansoni egg counts collected from Burundi and a simulation study using an established transmission model for schistosomiasis, we investigated the extent to which more sensitive diagnostics can improve decision making regarding stopping or continuing PC for the control of S. mansoni. RESULTS: We found that KK-based strategies perform reasonably well for determining when to stop PC at a local scale. Use of more sensitive diagnostics leads to a marginally improved health impact (person-years lived with heavy infection) and comes at a cost of continuing PC for longer (up to around 3 years), unless the decision threshold for stopping PC is adapted upward. However, if this threshold is set too high, PC may be stopped prematurely, resulting in a rebound of infection levels and disease burden (+45% person-years of heavy infection). CONCLUSIONS: We conclude that the potential value of more sensitive diagnostics lies more in the reduction of survey-related costs than in the direct health impact of improved parasite control.


Subject(s)
Cost-Benefit Analysis , Parasite Egg Count , Schistosoma mansoni , Schistosomiasis mansoni , Humans , Animals , Schistosoma mansoni/isolation & purification , Schistosomiasis mansoni/diagnosis , Schistosomiasis mansoni/prevention & control , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/epidemiology , Anthelmintics/therapeutic use , Anthelmintics/economics , Female , Male , Schistosomiasis/diagnosis , Schistosomiasis/prevention & control , Schistosomiasis/drug therapy , Schistosomiasis/epidemiology , Adult , Adolescent , Child , Chemoprevention/economics , Chemoprevention/methods , Young Adult , Sensitivity and Specificity
2.
Clin Infect Dis ; 78(Supplement_2): S146-S152, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662703

ABSTRACT

Globally, there are over 1 billion people infected with soil-transmitted helminths (STHs), mostly living in marginalized settings with inadequate sanitation in sub-Saharan Africa and Southeast Asia. The World Health Organization recommends an integrated approach to STH morbidity control through improved access to sanitation and hygiene education and the delivery of preventive chemotherapy (PC) to school-age children delivered through schools. Progress of STH control programs is currently estimated using a baseline (pre-PC) school-based prevalence survey and then monitored using periodical school-based prevalence surveys, known as Impact Assessment Surveys (IAS). We investigated whether integrating geostatistical methods with a Markov model or a mechanistic transmission model for projecting prevalence forward in time from baseline can improve IAS design strategies. To do this, we applied these 2 methods to prevalence data collected in Kenya, before evaluating and comparing their performance in accurately informing optimal survey design for a range of IAS sampling designs. We found that, although both approaches performed well, the mechanistic method more accurately projected prevalence over time and provided more accurate information for guiding survey design. Both methods performed less well in areas with persistent STH hotspots where prevalence did not decrease despite multiple rounds of PC. Our findings show that these methods can be useful tools for more efficient and accurate targeting of PC. The general framework built in this paper can also be used for projecting prevalence and informing survey design for other neglected tropical diseases.


Subject(s)
Helminthiasis , Markov Chains , Soil , Humans , Helminthiasis/epidemiology , Helminthiasis/transmission , Prevalence , Kenya/epidemiology , Soil/parasitology , Child , Helminths/isolation & purification , Animals , Models, Statistical , Adolescent , Schools
3.
Clin Infect Dis ; 78(Supplement_2): S93-S100, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662701

ABSTRACT

BACKGROUND: Mass drug administration (MDA) is the cornerstone for the elimination of lymphatic filariasis (LF). The proportion of the population that is never treated (NT) is a crucial determinant of whether this goal is achieved within reasonable time frames. METHODS: Using 2 individual-based stochastic LF transmission models, we assess the maximum permissible level of NT for which the 1% microfilaremia (mf) prevalence threshold can be achieved (with 90% probability) within 10 years under different scenarios of annual MDA coverage, drug combination and transmission setting. RESULTS: For Anopheles-transmission settings, we find that treating 80% of the eligible population annually with ivermectin + albendazole (IA) can achieve the 1% mf prevalence threshold within 10 years of annual treatment when baseline mf prevalence is 10%, as long as NT <10%. Higher proportions of NT are acceptable when more efficacious treatment regimens are used. For Culex-transmission settings with a low (5%) baseline mf prevalence and diethylcarbamazine + albendazole (DA) or ivermectin + diethylcarbamazine + albendazole (IDA) treatment, elimination can be reached if treatment coverage among eligibles is 80% or higher. For 10% baseline mf prevalence, the target can be achieved when the annual coverage is 80% and NT ≤15%. Higher infection prevalence or levels of NT would make achieving the target more difficult. CONCLUSIONS: The proportion of people never treated in MDA programmes for LF can strongly influence the achievement of elimination and the impact of NT is greater in high transmission areas. This study provides a starting point for further development of criteria for the evaluation of NT.


Subject(s)
Albendazole , Elephantiasis, Filarial , Filaricides , Ivermectin , Mass Drug Administration , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/prevention & control , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/transmission , Humans , Animals , Filaricides/therapeutic use , Filaricides/administration & dosage , Albendazole/administration & dosage , Albendazole/therapeutic use , Ivermectin/administration & dosage , Ivermectin/therapeutic use , Prevalence , Anopheles/parasitology , Disease Eradication/methods , Wuchereria bancrofti/drug effects , Diethylcarbamazine/administration & dosage , Diethylcarbamazine/therapeutic use , Drug Therapy, Combination
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34187879

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is heterogeneous throughout Africa and threatening millions of lives. Surveillance and short-term modeling forecasts are critical to provide timely information for decisions on control strategies. We created a strategy that helps predict the country-level case occurrences based on cases within or external to a country throughout the entire African continent, parameterized by socioeconomic and geoeconomic variations and the lagged effects of social policy and meteorological history. We observed the effect of the Human Development Index, containment policies, testing capacity, specific humidity, temperature, and landlocked status of countries on the local within-country and external between-country transmission. One-week forecasts of case numbers from the model were driven by the quality of the reported data. Seeking equitable behavioral and social interventions, balanced with coordinated country-specific strategies in infection suppression, should be a continental priority to control the COVID-19 pandemic in Africa.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Africa/epidemiology , COVID-19/diagnosis , COVID-19/prevention & control , Forecasting , Humans , Models, Statistical , Public Policy , SARS-CoV-2/isolation & purification , Weather
5.
Clin Infect Dis ; 74(11): 1993-2000, 2022 06 10.
Article in English | MEDLINE | ID: mdl-34463736

ABSTRACT

BACKGROUND: Diverse environmental exposures and risk factors have been implicated in the transmission of Salmonella Typhi, but the dominant transmission pathways through the environment to susceptible humans remain unknown. Here, we use spatial, bacterial genomic, and hydrological data to refine our view of typhoid transmission in an endemic setting. METHODS: A total of 546 patients presenting to Queen Elizabeth Central Hospital in Blantyre, Malawi, with blood culture-confirmed typhoid fever between April 2015 and January 2017 were recruited to a cohort study. The households of a subset of these patients were geolocated, and 256 S. Typhi isolates were whole-genome sequenced. Pairwise single-nucleotide variant distances were incorporated into a geostatistical modeling framework using multidimensional scaling. RESULTS: Typhoid fever was not evenly distributed across Blantyre, with estimated minimum incidence ranging across the city from <15 to >100 cases per 100 000 population per year. Pairwise single-nucleotide variant distance and physical household distances were significantly correlated (P = .001). We evaluated the ability of river catchment to explain the spatial patterns of genomics observed, finding that it significantly improved the fit of the model (P = .003). We also found spatial correlation at a smaller spatial scale, of households living <192 m apart. CONCLUSIONS: These findings reinforce the emerging view that hydrological systems play a key role in the transmission of typhoid fever. By combining genomic and spatial data, we show how multifaceted data can be used to identify high incidence areas, explain the connections between them, and inform targeted environmental surveillance, all of which will be critical to shape local and regional typhoid control strategies.


Subject(s)
Typhoid Fever , Cohort Studies , Genomics , Humans , Nucleotides , Salmonella typhi/genetics , Typhoid Fever/microbiology
6.
Stat Sci ; 37(2): 183-206, 2022 May.
Article in English | MEDLINE | ID: mdl-35664221

ABSTRACT

We present interoperability as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring and characterising spatial-temporal prevalence and reproduction numbers of SARS-CoV-2 infections in England.

7.
Epidemiol Infect ; 150: e122, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35535751

ABSTRACT

Typhoid fever is a major cause of illness and mortality in low- and middle-income settings. We investigated the association of typhoid fever and rainfall in Blantyre, Malawi, where multi-drug-resistant typhoid has been transmitting since 2011. Peak rainfall preceded the peak in typhoid fever by approximately 15 weeks [95% confidence interval (CI) 13.3, 17.7], indicating no direct biological link. A quasi-Poisson generalised linear modelling framework was used to explore the relationship between rainfall and typhoid incidence at biologically plausible lags of 1-4 weeks. We found a protective effect of rainfall anomalies on typhoid fever, at a two-week lag (P = 0.006), where a 10 mm lower-than-expected rainfall anomaly was associated with up to a 16% reduction in cases (95% CI 7.6, 26.5). Extreme flooding events may cleanse the environment of S. Typhi, while unusually low rainfall may reduce exposure from sewage overflow. These results add to evidence that rainfall anomalies may play a role in the transmission of enteric pathogens, and can help direct future water and sanitation intervention strategies for the control of typhoid fever.


Subject(s)
Rain , Typhoid Fever/epidemiology , Drug Resistance, Multiple , Humans , Incidence , Malawi/epidemiology , Poisson Distribution , Poverty , Sanitation , Social Class , Typhoid Fever/prevention & control
8.
Clin Infect Dis ; 72(Suppl 3): S172-S179, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33905476

ABSTRACT

Maps of the geographical variation in prevalence play an important role in large-scale programs for the control of neglected tropical diseases. Precontrol mapping is needed to establish the appropriate control intervention in each area of the country in question. Mapping is also needed postintervention to measure the success of control efforts. In the absence of comprehensive disease registries, mapping efforts can be informed by 2 kinds of data: empirical estimates of local prevalence obtained by testing individuals from a sample of communities within the geographical region of interest, and digital images of environmental factors that are predictive of local prevalence. In this article, we focus on the design and analysis of impact surveys, that is, prevalence surveys that are conducted postintervention with the aim of informing decisions on what further intervention, if any, is needed to achieve elimination of the disease as a public health problem. We show that geospatial statistical methods enable prevalence surveys to be designed and analyzed as efficiently as possible so as to make best use of hard-won field data. We use 3 case studies based on data from soil-transmitted helminth impact surveys in Kenya, Sierra Leone, and Zimbabwe to compare the predictive performance of model-based geostatistics with methods described in current World Health Organization (WHO) guidelines. In all 3 cases, we find that model-based geostatistics substantially outperforms the current WHO guidelines, delivering improved precision for reduced field-sampling effort. We argue from experience that similar improvements will hold for prevalence mapping of other neglected tropical diseases.


Subject(s)
Helminthiasis , Helminths , Animals , Humans , Kenya , Neglected Diseases , Prevalence , Sierra Leone , Soil , Zimbabwe
9.
Clin Infect Dis ; 72(8): 1463-1466, 2021 04 26.
Article in English | MEDLINE | ID: mdl-32984870

ABSTRACT

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.


Subject(s)
COVID-19 , Tropical Medicine , Humans , Neglected Diseases/epidemiology , Pandemics , SARS-CoV-2
10.
Am J Epidemiol ; 190(5): 893-899, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33274738

ABSTRACT

Accurate measurements of seroincidence are critical for infections undercounted by reported cases, such as influenza, arboviral diseases, and leptospirosis. However, conventional methods of interpreting paired serological samples do not account for antibody titer decay, resulting in underestimated seroincidence rates. To improve interpretation of paired sera, we modeled exponential decay of interval-censored microscopic agglutination test titers using a historical data set of leptospirosis cases traced to a point source exposure in Italy in 1984. We then applied that decay rate to a longitudinal cohort study conducted in a high-transmission setting in Salvador, Brazil (2013-2015). We estimated a decay constant of 0.926 (95% confidence interval: 0.918, 0.934) titer dilutions per month. Accounting for decay in the cohort increased the mean infection rate to 1.21 times the conventionally defined rate over 6-month intervals (range, 1.10-1.36) and 1.82 times that rate over 12-month intervals (range, 1.65-2.07). Improved estimates of infection in longitudinal data have broad epidemiologic implications, including comparing studies with different sampling intervals, improving sample size estimation, and determining risk factors for infection and the role of acquired immunity. Our method of estimating and accounting for titer decay is generalizable to other infections defined using interval-censored serological assays.


Subject(s)
Leptospirosis/blood , Leptospirosis/epidemiology , Brazil/epidemiology , Humans , Incidence , Italy/epidemiology , Longitudinal Studies , Risk Factors , Seroepidemiologic Studies
11.
Ann Bot ; 128(7): 875-886, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34397092

ABSTRACT

BACKGROUND AND AIMS: In hierarchically reticulate venation patterns, smaller orders of veins form areoles in which stomata are located. This study aimed to quantify the spatial relationship among stomata at the areole level. METHODS: For each of 12 leaves of M. cavaleriei var. platypetala, we assumed that stomatal characteristics were symmetrical on either side of the midrib, and divided the leaf surface on one side of the midrib into six layers equidistantly spaced along the apical-basal axis. We then further divided each layer into three positions equidistantly spaced from midrib to leaf margin, resulting in a total of 18 sampling locations. In addition, for 60 leaves, we sampled three positions from midrib to margin within only the widest layer of the leaf. Stomatal density and mean nearest neighbour distance (MNND) were calculated for each section. A replicated spatial point pattern approach quantified stomatal spatial relationships at different distances (0-300 µm). KEY RESULTS: A tendency towards regular arrangement (inhibition as opposed to attraction or clustering) was observed between stomatal centres at distances <100 µm. Leaf layer (leaf length dimension) had no significant effect on local stomatal density, MNND or the spatial distribution characteristics of stomatal centres. In addition, we did not find greater inhibition at the centre of areoles, and in positions farther from the midrib. CONCLUSIONS: Spatial inhibition might be caused by the one-cell-spacing rule, resulting in more regular arrangement of stomata, and it was found to exist at distances up to ~100 µm. This work implies that leaf hydraulic architecture, consisting of both vascular and mesophyll properties, is sufficient to prevent important spatial variability in water supply at the areole level.


Subject(s)
Magnoliaceae , Plant Leaves , Plant Stomata
12.
Malar J ; 20(1): 232, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022912

ABSTRACT

BACKGROUND: Current standard interventions are not universally sufficient for malaria elimination. The effects of community-based house improvement (HI) and larval source management (LSM) as supplementary interventions to the Malawi National Malaria Control Programme (NMCP) interventions were assessed in the context of an intensive community engagement programme. METHODS: The study was a two-by-two factorial, cluster-randomized controlled trial in Malawi. Village clusters were randomly assigned to four arms: a control arm; HI; LSM; and HI + LSM. Malawi NMCP interventions and community engagement were used in all arms. Household-level, cross-sectional surveys were conducted on a rolling, 2-monthly basis to measure parasitological and entomological outcomes over 3 years, beginning with one baseline year. The primary outcome was the entomological inoculation rate (EIR). Secondary outcomes included mosquito density, Plasmodium falciparum prevalence, and haemoglobin levels. All outcomes were assessed based on intention to treat, and comparisons between trial arms were conducted at both cluster and household level. RESULTS: Eighteen clusters derived from 53 villages with 4558 households and 20,013 people were randomly assigned to the four trial arms. The mean nightly EIR fell from 0.010 infectious bites per person (95% CI 0.006-0.015) in the baseline year to 0.001 (0.000, 0.003) in the last year of the trial. Over the full trial period, the EIR did not differ between the four trial arms (p = 0.33). Similar results were observed for the other outcomes: mosquito density and P. falciparum prevalence decreased over 3 years of sampling, while haemoglobin levels increased; and there were minimal differences between the trial arms during the trial period. CONCLUSIONS: In the context of high insecticide-treated bed net use, neither community-based HI, LSM, nor HI + LSM contributed to further reductions in malaria transmission or prevalence beyond the reductions observed over two years across all four trial arms. This was the first trial, as far as the authors are aware, to test the potential complementary impact of LSM and/or HI beyond levels achieved by standard interventions. The unexpectedly low EIR values following intervention implementation indicated a promising reduction in malaria transmission for the area, but also limited the usefulness of this outcome for measuring differences in malaria transmission among the trial arms. Trial registration PACTR, PACTR201604001501493, Registered 3 March 2016, https://pactr.samrc.ac.za/ .


Subject(s)
Anopheles , Disease Transmission, Infectious/prevention & control , Malaria, Falciparum/transmission , Mosquito Control , Mosquito Vectors , Animals , Anopheles/growth & development , Disease Transmission, Infectious/statistics & numerical data , Larva , Malawi
13.
Environ Sci Technol ; 55(23): 15882-15890, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34767339

ABSTRACT

Leptospirosis is an environmentally transmitted zoonotic disease caused by pathogenic Leptospira spp. that affects poor communities worldwide. In urban slums, leptospirosis is associated with deficient sanitary infrastructure. Yet, the role of sewerage in the reduction of the environmental contamination with pathogenic Leptospira has not been explored. Here, we conducted a survey of the pathogen in soils surrounding open and closed sewer sections in six urban slums in Brazil. We found that soils surrounding conventionally closed sewers (governmental interventions) were 3 times less likely to contain pathogenic Leptospira (inverse OR 3.44, 95% CI = 1.66-8.33; p < 0.001) and contained a 6 times lower load of the pathogen (0.82 log10 units difference, p < 0.01) when compared to their open counterparts. However, no differences were observed in community-closed sewers (poor-quality closings performed by the slum dwellers). Human fecal markers (BacHum) were positively associated with pathogenic Leptospira even in closed sewers, and rat presence was not predictive of the presence of the pathogen in soils, suggesting that site-specific rodent control may not be sufficient to reduce the environmental contamination with Leptospira. Overall, our results indicate that sewerage expansion to urban slums may help reduce the environmental contamination with the pathogen and therefore reduce the risk of human leptospirosis.


Subject(s)
Leptospira , Leptospirosis , Animals , Brazil , Leptospirosis/epidemiology , Poverty Areas , Rats , Soil
14.
BMC Nephrol ; 22(1): 329, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34600515

ABSTRACT

BACKGROUND: Fibroblast growth factor23 (FGF23) is elevated in CKD and has been associated with outcomes such as death, cardiovascular (CV) events and progression to Renal Replacement therapy (RRT). The majority of studies have been unable to account for change in FGF23 over time and those which have demonstrate conflicting results. We performed a survival analysis looking at change in c-terminal FGF23 (cFGF23) over time to assess the relative contribution of cFGF23 to these outcomes. METHODS: We measured cFGF23 on plasma samples from 388 patients with CKD 3-5 who had serial measurements of cFGF23, with a mean of 4.2 samples per individual. We used linear regression analysis to assess the annual rate of change in cFGF23 and assessed the relationship between time-varying cFGF23 and the outcomes in a cox-regression analysis. RESULTS: Across our population, median baseline eGFR was 32.3mls/min/1.73m2, median baseline cFGF23 was 162 relative units/ml (RU/ml) (IQR 101-244 RU/mL). Over 70 months (IQR 53-97) median follow-up, 76 (19.6%) patients progressed to RRT, 86 (22.2%) died, and 52 (13.4%) suffered a major non-fatal CV event. On multivariate analysis, longitudinal change in cFGF23 was significantly associated with risk for death and progression to RRT but not non-fatal cardiovascular events. CONCLUSION: In our study, increasing cFGF23 was significantly associated with risk for death and RRT.


Subject(s)
Fibroblast Growth Factor-23/blood , Renal Insufficiency, Chronic/blood , Aged , Disease Progression , Female , Humans , Male , Middle Aged , Prospective Studies , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/mortality , Severity of Illness Index , Time Factors
15.
J Infect Dis ; 221(Suppl 5): S554-S560, 2020 06 11.
Article in English | MEDLINE | ID: mdl-31930383

ABSTRACT

As neglected tropical diseases approach elimination status, there is a need to develop efficient sampling strategies for confirmation (or not) that elimination criteria have been met. This is an inherently difficult task because the relative precision of a prevalence estimate deteriorates as prevalence decreases, and classic survey sampling strategies based on random sampling therefore require increasingly large sample sizes. More efficient strategies for survey design and analysis can be obtained by exploiting any spatial correlation in prevalence within a model-based geostatistics framework. This framework can be used for constructing predictive probability maps that can inform in-country decision makers of the likelihood that their elimination target has been met, and where to invest in additional sampling. We evaluated our methodology using a case study of lymphatic filariasis in Ghana, demonstrating that a geostatistical approach outperforms approaches currently used to determine an evaluation unit's elimination status.


Subject(s)
Disease Eradication/standards , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Tropical Medicine , Computer Simulation , Data Collection , Humans , Models, Biological , Prevalence
16.
Clin Infect Dis ; 70(7): 1278-1284, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31144715

ABSTRACT

BACKGROUND: Typhoid fever remains a major cause of morbidity and mortality in low- and middle-income settings. In the last 10 years, several reports have described the reemergence of typhoid fever in southern and eastern Africa, associated with multidrug-resistant H58 Salmonella Typhi. Here, we identify risk factors for pediatric typhoid fever in a large epidemic in Blantyre, Malawi. METHODS: A case-control study was conducted between April 2015 and November 2016. Cases were recruited at a large teaching hospital, and controls were recruited from the community, matched by residential ward. Stepwise variable selection and likelihood ratio testing were used to select candidate risk factors for a final logistic regression model. RESULTS: Use of river water for cooking and cleaning was highly associated with risk of typhoid fever (odds ratio [OR], 4.6 [95% confidence interval {CI}, 1.7-12.5]). Additional risk factors included protective effects of soap in the household (OR, 0.6 [95% CI, .4-.98]) and >1 water source used in the previous 3 weeks (OR, 3.2 [95% CI, 1.6-6.2]). Attendance at school or other daycare was also identified as a risk factor (OR, 2.7 [95% CI, 1.4-5.3]) and was associated with the highest attributable risk (51.3%). CONCLUSIONS: These results highlight diverse risk factors for typhoid fever in Malawi, with implications for control in addition to the provision of safe drinking water. There is an urgent need to improve our understanding of transmission pathways of typhoid fever, both to develop tools for detecting S. Typhi in the environment and to inform water, sanitation, and hygiene interventions.


Subject(s)
Typhoid Fever , Africa, Eastern , Case-Control Studies , Child , Humans , Malawi/epidemiology , Rivers , Salmonella typhi , Typhoid Fever/epidemiology , Water
17.
Clin Infect Dis ; 71(Suppl 2): S96-S101, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32725231

ABSTRACT

BACKGROUND: Typhoid fever remains a major source of morbidity and mortality in low-income settings. Its most feared complication is intestinal perforation. However, due to the paucity of diagnostic facilities in typhoid-endemic settings, including microbiology, histopathology, and radiology, the etiology of intestinal perforation is frequently assumed but rarely confirmed. This poses a challenge for accurately estimating burden of disease. METHODS: We recruited a prospective cohort of patients with confirmed intestinal perforation in 2016 and performed enhanced microbiological investigations (blood and tissue culture, plus tissue polymerase chain reaction [PCR] for Salmonella Typhi). In addition, we used a Poisson generalized linear model to estimate excess perforations attributed to the typhoid epidemic, using temporal trends in S. Typhi bloodstream infection and perforated abdominal viscus at Queen Elizabeth Central Hospital from 2008-2017. RESULTS: We recruited 23 patients with intraoperative findings consistent with intestinal perforation. 50% (11/22) of patients recruited were culture or PCR positive for S. Typhi. Case fatality rate from typhoid-associated intestinal perforation was substantial at 18% (2/11). Our statistical model estimates that culture-confirmed cases of typhoid fever lead to an excess of 0.046 perforations per clinical typhoid fever case (95% CI, .03-.06). We therefore estimate that typhoid fever accounts for 43% of all bowel perforation during the period of enhanced surveillance. CONCLUSIONS: The morbidity and mortality associated with typhoid abdominal perforations are high. By placing clinical outcome data from a cohort in the context of longitudinal surgical registers and bacteremia data, we describe a valuable approach to adjusting estimates of the burden of typhoid fever.


Subject(s)
Epidemics , Intestinal Perforation , Typhoid Fever , Humans , Intestinal Perforation/epidemiology , Malawi , Prospective Studies , Salmonella typhi , Typhoid Fever/complications , Typhoid Fever/epidemiology
18.
Emerg Infect Dis ; 26(2): 311-314, 2020 02.
Article in English | MEDLINE | ID: mdl-31961288

ABSTRACT

The incidence of hospitalized leptospirosis patients was positively associated with increased precipitation in Salvador, Brazil. However, Leptospira infection risk among a cohort of city residents was inversely associated with rainfall. These findings indicate that, although heavy rainfall may increase severe illness, Leptospira exposures can occur year-round.


Subject(s)
Hospitalization , Leptospirosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Child, Preschool , Female , Humans , Incidence , Leptospirosis/etiology , Male , Middle Aged , Poverty , Rain , Risk Factors , Seasons , Young Adult
19.
Thorax ; 75(2): 123-131, 2020 02.
Article in English | MEDLINE | ID: mdl-31771956

ABSTRACT

BACKGROUND: Newborn bloodspot screening (NBS) for cystic fibrosis (CF) was introduced across the UK in 2007 but the impact on clinical outcomes and health inequalities for children with CF is unclear. METHODS: We undertook longitudinal analyses of UK CF registry data on over 3000 children with CF born between 2000 and 2015. Clinical outcomes were the trajectories of percent predicted forced expiratory volume in one second (%FEV1) from age 5, weight for age and body mass index (BMI) SD-scores from age one, and time to chronic Pseudomonas aeruginosa (cPA) infection. Using mixed effects and time-to-event models we assessed the association of NBS with outcomes and potential interactions with childhood socioeconomic conditions, while adjusting for confounders. RESULTS: NBS was associated with higher average lung function trajectory (+1.56 FEV1 percentage points 95% CI 0.1 to 3.02, n=2216), delayed onset of cPA, and higher average weight trajectory intercept at age one (+0.16 SD; 95% CI 0.07 to 0.26, n=3267) but negative rate of weight change thereafter (-0.02 SD per year; 95% CI -0.03 to -0.00). We found no significant association of NBS with BMI or rate of change of lung function. There was no clear evidence of an impact of NBS on health inequalities early in life. CONCLUSIONS: Children diagnosed with CF by NBS in the UK have better lung function and increased early weight but NBS does not appear to have narrowed early health inequalities.


Subject(s)
Cystic Fibrosis/diagnosis , Health Status Disparities , Neonatal Screening/methods , Nutritional Status , Registries , Age Factors , Body Mass Index , Child , Child Development/physiology , Child, Preschool , Cystic Fibrosis/epidemiology , Forced Expiratory Volume , Humans , Incidence , Infant , Infant, Newborn , Longitudinal Studies , Male , Respiratory Function Tests , Retrospective Studies , Risk Assessment , United Kingdom
20.
Proc Biol Sci ; 287(1930): 20200119, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32635867

ABSTRACT

Mosquito-borne Zika virus (ZIKV) transmission has almost exclusively been detected in the tropics despite the distributions of its primary vectors extending farther into temperate regions. Therefore, it is unknown whether ZIKV's range has reached a temperature-dependent limit, or if it can spread into temperate climates. Using field-collected mosquitoes for biological relevance, we found that two common temperate mosquito species, Aedes albopictus and Ochlerotatus detritus, were competent for ZIKV. We orally exposed mosquitoes to ZIKV and held them at between 17 and 31°C, estimated the time required for mosquitoes to become infectious, and applied these data to a ZIKV spatial risk model. We identified a minimum temperature threshold for the transmission of ZIKV by mosquitoes between 17 and 19°C. Using these data, we generated standardized basic reproduction number R0-based risk maps and we derived estimates for the length of the transmission season for recent and future climate conditions. Our standardized R0-based risk maps show potential risk of ZIKV transmission beyond the current observed range in southern USA, southern China and southern European countries. Transmission risk is simulated to increase over southern and Eastern Europe, northern USA and temperate regions of Asia (northern China, southern Japan) in future climate scenarios.


Subject(s)
Mosquito Vectors , Temperature , Zika Virus Infection/transmission , Aedes , Animals , Basic Reproduction Number , Climate , Zika Virus
SELECTION OF CITATIONS
SEARCH DETAIL