Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(20): e2111294119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35537050

ABSTRACT

To meet the 1.5 °C target, methane (CH4) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH4 per unit meat or milk) and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies­namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio­decreased CH4 per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies­namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds­decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions.


Subject(s)
Methane , Ruminants , Africa , Animals , Developing Countries , Europe , Global Warming/prevention & control , Methane/analysis
2.
J Dairy Sci ; 107(10): 7769-7785, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38825123

ABSTRACT

The objectives were to investigate the effect of feeding and visiting behavior of dairy cattle on CH4 and H2 production measured with voluntary visits to the GreenFeed system (GF) and to determine whether these effects depended on basal diet (BD) and 3-nitrooxypropanol (3-NOP) supplementation. The experiment involved 64 lactating dairy cattle (146 ± 45 DIM at the start of trial; mean ± SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows within block were randomly allocated to 1 of 3 types of BD: a grass silage-based diet consisting of 30% concentrates and 70% grass silage (DM basis); a grass silage and corn silage mixed diet consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis); or a corn silage-based diet consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Each type of BD was subsequently supplemented with 0 and 60 mg 3-NOP/kg of DM in one crossover or 0 and 80 mg 3-NOP/kg of DM in the other crossover. Diets were provided in feed bins that automatically recorded feed intake and feeding behavior, with additional concentrate fed in the GF. All visits to the GF that resulted in a spot measurement of both CH4 and H2 emission were analyzed in relation to feeding behavior (e.g., meal size and time interval to preceding meal) as well as GF visiting behavior (e.g., duration of visit). Feeding and GF visiting behavior were related to CH4 and H2 production measured with the GF, in particular the meal size before a GF measurement and the time interval between a GF measurement and the preceding meal. Relationships between gas production and both feeding and GF visiting behavior were affected by type of BD as well as 3-NOP supplementation. With an increase of the time interval between a GF measurement and the preceding meal, CH4 production decreased with 0 mg 3-NOP/kg of DM but increased with 60 and 80 mg 3-NOP/kg of DM, whereas type of BD did not affect these relationships. In contrast, CH4 production increased with 0 mg 3-NOP/kg of DM but decreased with 60 and 80 mg 3-NOP/kg of DM upon an increase in the size of the meal preceding a GF measurement. With an increase of the time interval between a GF measurement and the preceding meal, or with a decrease of the size of the meal preceding a GF measurement, H2 production decreased for all treatments, although the effect was generally somewhat stronger for 60 and 80 mg 3-NOP/kg of DM than for 0 mg 3-NOP/kg of DM. Hence, the timing of GF measurements next to feeding and GF visiting behavior are essential when assessing the effect of dietary treatment on the production of CH4 and H2 in a setting where a spot-sampling device such as a GF is used and where the measurements depend on voluntary visits from the cows.


Subject(s)
Animal Feed , Diet , Feeding Behavior , Hydrogen , Lactation , Methane , Silage , Animals , Cattle/physiology , Methane/biosynthesis , Methane/metabolism , Female , Diet/veterinary , Hydrogen/analysis , Animal Feed/analysis , Zea mays
3.
J Dairy Sci ; 107(1): 342-358, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690727

ABSTRACT

A 305-d lactation followed by a 60-d dry period has traditionally been considered economically optimal, yet dairy cows in modern intensive dairy systems are frequently dried off while still producing significant quantities of milk. Managing cows for an extended lactation has reported production, welfare, and economic benefits, but not all cows are suitable for an extended lactation. Implementation of an extended lactation strategy on-farm could benefit from use of a decision support system, based on a mathematical lactation model, that can identify suitable cows during early lactation that have a high likelihood of producing above a target milk yield (MY) at 305 d in milk (DIM). Therefore, our objectives were (1) to compare the suitability of 3 commonly used lactation models for modeling extended lactations (Dijkstra, Wood, and Wilmink) in primiparous and multiparous cows under a variety of lactation lengths, and (2) to determine the amount of early-lactation daily MY data needed to accurately forecast MY at d 305 by using the most suitable model and determine whether this is sufficient for identifying cows suitable for an extended lactation before the end of a typical voluntary waiting period (50-90 d). Daily MY data from 467 individual Holstein-Friesian lactations (DIM >305 d; 379 ± 65-d lactation length [mean ± SD]) were fitted by the 3 lactation models using a nonlinear regression procedure. The parameter estimates of these models, lactation characteristics (peak yield, time to peak yield, and persistency), and goodness-of-fit were compared between parity and different lactation lengths. The models had similar performance, and differences between parity groups were consistent with previous literature. Then, data from only the first i DIM for each individual lactation, where i was incremented by 30 d from 30 to 150 DIM and by 50 d from 150 to 300 DIM, were fitted by each model to forecast MY at d 305. The Dijkstra model was selected for further analysis, as it had superior goodness-of-fit statistics for i= 30 and 60. The data set was fit twice by the Dijkstra model, with parameter bounds either unconstrained or constrained. The quality of predictions of MY at d 305 improved with increasing data availability for both models and assisting the model fitting procedure with more biologically relevant constraints on parameters improved the predictions, but neither was reliable enough for practical use on-farm due to the high uncertainty of forecasted predictions. Using 90 d of data, the constrained model correctly classified 66% of lactations as being above or below a target MY at d 305 of 25 kg/d, with a probability threshold of 0.95. The proportion of correct classifications became smaller at lower targets of MY at d 305 and became greater when using more lactation days. Overall, further work is required to develop a model that can forecast late-lactation MY with sufficient accuracy for practical use. We envisage that a hybridized machine learning and mechanistic model that incorporates additional historical and genetic information with early-lactation MY could produce meaningful lactation curve forecasts.


Subject(s)
Lactation , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Parity , Colostrum , Probability
4.
J Dairy Sci ; 107(8): 5556-5573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38395398

ABSTRACT

The objective was to determine the long-term effect of 3-nitrooxypropanol (3-NOP) on CH4 emission and milk production characteristics from dairy cows receiving 3-NOP in their diet for a full year, covering all lactation stages of the dairy cows. Sixty-four late-lactation Holstein-Friesian cows (34% primiparous) were blocked in pairs, based on expected calving date, parity, and daily milk yield. The experiment started with an adaptation period of 1 wk followed by a covariate period of 3 wk in which all cows received the same basal diet and baseline measurements were performed. Directly after, cows within a block were randomly allocated to 1 of 2 dietary treatments: a diet containing on average 69.8 mg 3-NOP/kg DM (total ration level, corrected for intake of nonsupplemented GreenFeed bait) and a diet containing a placebo. Forage composition as well as forage-to-concentrate ratio altered with lactation stage (i.e., dry period and early, mid, and late lactation). Diets were provided as a total mixed ration, and additional bait was fed in GreenFeed units (C-Lock Inc.), which were used for emission measurements. Supplementation of 3-NOP did not affect total DMI, BW, or BCS, but resulted in a 6.5% increase in the yields of energy-corrected milk and fat- and protein-corrected milk (FPCM). Furthermore, milk fat and protein as well as feed efficiency were increased upon 3-NOP supplementation. Overall, a reduction of 21%, 20%, and 27% was achieved for CH4 production (g/d), yield (g/kg DMI), and intensity (g/kg FPCM), respectively, upon 3-NOP supplementation. The CH4 mitigation potential of 3-NOP was affected by the lactation stage dependent diet to which 3-NOP was supplemented. On average, a 16%, 20%, 16%, and 26% reduction in CH4 yield (g/kg DMI) was achieved upon 3-NOP supplementation for the dry period, and early, mid, and late-lactation diets, respectively. The CH4 mitigation potential of 3-NOP was affected by the length of 3-NOP supplementation within a lactation stage dependent diet and by variation in diet composition within a lactation stage dependent diet as a result of changes in grass and corn silage silos. In conclusion, 3-NOP reduced CH4 emission from cows receiving 3-NOP for a year, with a positive effect on production characteristics. The CH4 mitigation potential of 3-NOP was influenced by diet type, diet composition, and nutrition value, and the efficacy of 3-NOP appeared to decline over time but not continuously. Associated with changes in diet composition, increased efficacy of 3-NOP was observed at the start of the trial, at the start of a new lactation, and, importantly, at the end of the trial. These results suggest that diet composition has a large effect on the efficacy of 3-NOP, perhaps even larger than the week of supplementation after first introduction of 3-NOP. More studies are needed to clarify the long-term effects of 3-NOP on CH4 emission and to further investigate what influence variation in diet composition may have on the mitigation potential of 3-NOP.


Subject(s)
Diet , Lactation , Methane , Milk , Animals , Cattle , Lactation/drug effects , Female , Milk/chemistry , Milk/metabolism , Diet/veterinary , Methane/biosynthesis , Methane/metabolism , Animal Feed/analysis , Dietary Supplements , Propanols/metabolism , Propanols/pharmacology
5.
Article in English | MEDLINE | ID: mdl-39138957

ABSTRACT

We expected mitigation of the hypophagic effects of urea (U) with a coated urea (CU) product that aimed to partially shift urea supply to the post-ruminal gastrointestinal tract. Ruminal release and post-ruminal digestibility of CU was evaluated in vitro, followed by a randomised complete block experiment (54 Holstein-Friesian cows; 177 ± 72 days in milk). Soybean meal (SBM) was partially (PR) or fully (FR) replaced on an isonitrogenous basis by beet pulp and U or CU. Urea sources were included at 12 (U-PR, CU-PR) and 19 (U-FR, CU-FR) g/kg dietary dry matter (DM). Hypophagic effects were similar for U-PR and CU-PR (-11% vs. -7%), and for U-FR and CU-FR (-13% vs. -12%) compared with SBM (average 25.8 kg DM intake/d). Compared with SBM, U-PR and CU-PR reduced yields of milk (-8%) and protein (-12%), U-PR reduced yield of fat (-9%) and fat- and protein-corrected-milk (FPCM; -9%), and CU-PR tended to reduce FPCM yield (-5%). Compared with SBM, U-FR and CU-FR respectively reduced yields of milk (-21%, -22%), protein (-25%, -26%), fat (both -14%), lactose (-20%, -21%), and FPCM (-17%, -19%), and lowered N (-15%, -12%) and feed (-8%, trend, -9%) efficiency. Human-edible protein efficiency approximately doubled with U-PR and CU-PR and approximately tripled with U-FR and CU-FR compared with SBM. Milk composition and plasma urea concentration were similar between U and CU, except for a trend for a greater plasma urea concentration with U-PR compared with CU-PR. Dry matter intake patterns differed for CU-PR compared with U-PR and for CU-FR compared with U-FR, suggesting effects of urea release rate or location on feeding behaviour. Overall, replacing SBM with U or CU reduced DM intake and milk production and affected nutrient efficiencies. Coated urea influenced DM intake pattern but did not affect total DM intake or milk production compared with U.

6.
J Dairy Sci ; 106(2): 927-936, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36494226

ABSTRACT

Ruminants, particularly dairy and beef cattle, contribute to climate change through mostly enteric methane emissions. Several mitigating options have been proposed, including the feed additive 3-nitrooxypropanol (3-NOP). The objectives of this study were to explain the variability in the mitigating effect of 3-NOP and to investigate the interaction between diet composition and 3-NOP dose, using meta-analytical approaches. Data from 13 articles (14 experiments) met the selection criteria for inclusion in the meta-analysis, and 48 treatment means were used for the analysis. Mean differences were calculated as 3-NOP treatment mean minus control treatment mean and then expressed as a percentage of the control mean. Three types of models were developed: (1) one including 3-NOP dose, overall mean, and individual covariate; (2) a combination of neutral detergent fiber (NDF), 3-NOP dose, and overall mean; and (3) one selected model from all combinations of up to 5 covariates, which were compared using a leave-one-out cross validation method. Models including only 3-NOP dose resulted in a significant reduction of 32.7%, 30.9%, and 32.6% for CH4 production (g/d), yield (g/kg dry matter intake), and intensity (g/kg energy-corrected milk), respectively, at an average 3-NOP dose of 70.5 mg/kg dry matter (DM). The greater the NDF content in the diet, the lower the reduction efficiency for a given 3-NOP dose. For 10 g/kg DM increase in NDF content from its mean (329 g of NDF/kg of DM) the 3-NOP effect on CH4 production was impaired by 0.633%, the 3-NOP effect on CH4 yield by 0.647%, and the 3-NOP effect on CH4 intensity by 0.723%. The analysis based on leave-one-out cross validation showed an increase in NDF and crude fat content reduces efficacy of 3-NOP and an increase in 3-NOP dose increases efficacy. A 1% (10 g/kg) DM decrease in dietary NDF content from its mean may increase the efficacy of 3-NOP in reducing CH4 production by 0.915%. A 1% (10 g/kg DM) decrease in dietary crude fat content from its mean enhances the efficacy of 3-NOP on CH4 production by 3.080% at a given dose and NDF level. For CH4 yield, next to 3-NOP dose, dietary NDF content and dietary crude fat content were included in the selected model, but also dietary starch content with an opposite direction to NDF and crude fat. The effect of 3-NOP dose on CH4 intensity was similar to its effect on CH4 production, whereas the effect of dietary NDF content was slightly lower. Expanding the previously published models with the newly available data published from trials since then improved model performance, hence demonstrating the value of regularly updating meta-analyses if a wider range of data becomes available.


Subject(s)
Lactation , Milk , Female , Cattle , Animals , Milk/chemistry , Diet/veterinary , Ruminants , Dietary Fiber/analysis , Dietary Fats/analysis , Methane , Animal Feed/analysis , Rumen/chemistry
7.
J Dairy Sci ; 106(10): 6834-6848, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37210350

ABSTRACT

Estimating daily enteric hydrogen (H2) and methane (CH4) emitted from dairy cattle using spot sampling techniques requires accurate sampling schemes. These sampling schemes determine the number of daily samplings and their intervals. This simulation study assessed the accuracy of daily H2 and CH4 emissions from dairy cattle using various sampling schemes for gas collection. Gas emission data were available from a crossover experiment with 28 cows fed twice daily at 80% to 95% of the ad libitum intake, and an experiment that used a repeated randomized block design with 16 cows twice daily fed ad libitum. Gases were sampled every 12 to 15 min for 3 consecutive days in climate respiration chambers. Feed was fed in 2 equal portions per day in both experiments. Per individual cow-period combination, generalized additive models were fitted to all diurnal H2 and CH4 emission profiles. Per profile, the models were fitted using the generalized cross-validation, REML, REML while assuming correlated residuals, and REML while assuming heteroscedastic residuals. The areas under the curve (AUC) of these 4 fits were numerically integrated over 24 h to compute the daily production and compared with the mean of all data points, which was considered the reference. Next, the best of the 4 fits was used to evaluate 9 different sampling schemes. This evaluation determined the average predicted values sampled at 0.5, 1, and 2 h intervals starting at 0 h from morning feeding, at 1 and 2 h intervals starting at 0.5 h from morning feeding, at 6 and 8 h intervals starting at 2 h from morning feeding, and at 2 unequally spaced intervals with 2 or 3 samples per day. Sampling every 0.5 h was needed to obtain daily H2 productions not different from the selected AUC for the restricted feeding experiment, whereas less frequent sampling had predictions varying from 47% to 233% of the AUC. For the ad libitum feeding experiment, sampling schemes had H2 productions from 85% to 155% of the corresponding AUC. For the restricted feeding experiment, daily CH4 production needed samplings every 2 h or shorter, or 1 h or shorter, depending on sampling time after feeding, whereas sampling scheme did not affect CH4 production for the twice daily ad libitum feeding experiment. In conclusion, sampling scheme had a major impact on predicted daily H2 production, particularly with restricted feeding, whereas daily CH4 production was less severely affected by sampling scheme.


Subject(s)
Lactation , Milk , Female , Cattle , Animals , Milk/chemistry , Diet/veterinary , Hydrogen , Methane
8.
J Dairy Sci ; 105(4): 2828-2839, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35181128

ABSTRACT

The aim of this study was to analyze the effect of fat and protein supplementation to dairy cattle rations on milk fat triacylglycerol (TAG) composition, fatty acid (FA) positional distribution in the TAG structure, and milk solid fat content (SFC). Fifty-six lactating Holstein-Friesian cows were blocked into 14 groups of 4 cows and randomly assigned 1 of 4 dietary treatments fed for 28 d: (1) low protein, low fat, (2) high protein, low fat, (3) low protein, high fat, and (4) high protein, high fat. The high protein and high fat diets were obtained by isoenergetically supplementing the basal ration (low protein, low fat) with rumen-protected soybean meal and rumen-protected rapeseed meal, and hydrogenated palm FA (mainly C16:0 and C18:0), respectively. Fat supplementation modified milk TAG composition more extensively compared with protein supplementation. Fat supplementation resulted in decreased concentrations of the low molecular weight TAG carbon number (CN) 26 to CN34 and medium molecular weight TAG CN40, CN44, and CN46, and increased concentrations of CN38 and the high molecular weight TAG CN50 and CN52. Increased contents of C16:0, C18:0, and C18:1cis-9 in TAG in response to fat supplementation were related to increases in the relative concentrations of C16:0 and C18:0 at the sn-2 position and C18:0 and C18:1cis-9 at the sn-1(3) positions of the TAG structure. Increased concentrations of high molecular weight TAG species CN50 and CN52 in response to fat supplementation was associated with increased milk SFC at 20, 25, and 30°C. Our study shows that important alterations in milk TAG composition and structure occur when feeding hydrogenated palm FA to lactating dairy cattle, and that these alterations result in an increased SFC of milk fat. These changes in milk SFC and TAG composition and structure may improve absorption of both fat and minerals in milk-based products for infants and may affect processing of milk fat.


Subject(s)
Fatty Acids , Rumen , Animals , Cattle , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Fatty Acids/metabolism , Lactation/physiology , Milk/chemistry , Rumen/metabolism , Triglycerides/metabolism
9.
J Dairy Sci ; 105(5): 4064-4082, 2022 May.
Article in English | MEDLINE | ID: mdl-35221072

ABSTRACT

The objective of this study was to investigate whether the CH4 mitigation potential of 3-nitrooxypropanol (3-NOP) in dairy cattle was affected by basal diet (BD) composition. The experiment involved 64 Holstein-Friesian dairy cows (146 ± 45 d in milk at the start of trial; mean ± SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows were blocked according to parity, d in milk, and milk yield, and randomly allocated to 1 of 3 diets: a grass silage-based diet (GS) consisting of 30% concentrates and 70% grass silage (DM basis), a grass silage- and corn silage-mixed diet (GSCS) consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis), or a corn silage-based diet (CS) consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Two types of concentrates were formulated, viz. a concentrate for the GS diet and a concentrate for the CS diet, to meet the energy and protein requirements for maintenance and milk production. The concentrate for the GSCS diet consisted of a 50:50 mixture of both concentrates. Subsequently, the cows within each type of BD received 2 treatments in a crossover design: either 60 mg of 3-NOP/kg of DM (NOP60) and a placebo with 0 mg of 3-NOP/kg of DM (NOP0) in one crossover or 80 mg of 3-NOP/kg of DM (NOP80) and NOP0 in the other crossover. Diets were provided as total mixed ration in feed bins, which automatically recorded feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CH4 and H2. The CS diets resulted in a reduced CH4 yield (g/kg DMI) and CH4 intensity (g/kg milk). Feeding 3-NOP resulted in a decreased DMI. Milk production and composition did not differ between NOP60 and NOP0, whereas milk yield and the yield of major components decreased for NOP80 compared with NOP0. Feed efficiency was not affected by feeding 3-NOP. Interactions between BD and supplementation of 3-NOP were observed for the production (g/d) and yield (g/kg DMI) of both CH4 and H2, indicating that the mitigating effect of 3-NOP depended on the composition of the BD. Emissions of CH4 decreased upon 3-NOP supplementation for all BD, but the decrease in CH4 emissions was smaller for GS (-26.2% for NOP60 and -28.4% for NOP80 in CH4 yield) compared with both GSCS (-35.1% for NOP60 and -37.9% for NOP80 for CH4 yield) and CS (-34.8% for NOP60 and -41.6% for NOP80 for CH4 yield), with no difference between the latter 2 BD. Emissions of H2 increased upon 3-NOP supplementation for all BD, but the H2 yield (g/kg DMI) increased 3.16 and 3.30-fold, respectively, when NOP60 and NOP80 were supplemented to GS, and 4.70 and 4.96 fold, respectively, when NOP60 and NOP80 were supplemented to CS. In conclusion, 3-NOP can effectively decrease CH4 emissions in dairy cows across diets, but the level of CH4 mitigation is greater when supplemented in a corn silage-based diet compared with a grass silage-based diet.


Subject(s)
Lactation , Methane , Animals , Cattle , Diet/veterinary , Female , Poaceae/metabolism , Pregnancy , Propanols , Silage/analysis , Zea mays/metabolism
10.
J Dairy Sci ; 104(10): 10714-10726, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218916

ABSTRACT

Limited research with growing ruminants indicates that oscillating (OS) dietary crude protein (CP) concentration may improve nitrogen use efficiency (NUE). Our aim was to determine if a total mixed ration (TMR) based on OS CP (48-h phases of 13.4% and 16.5% CP, respectively) would increase NUE of lactating dairy cows compared with a static CP TMR (ST; 14.9% CP). The experiment was a randomized complete block design with 50 cows [150 ± 61 (mean ± SD) d in milk]. Cows were blocked by parity, days in milk, and milk protein yield. On average, diets were equal in composition over the total experiment. Cows were milked twice daily, and 8 milk samples were collected in each 4-d period. Each 48 h of low-CP (LP) and high-CP (HP) TMR offered to OS cows corresponded to milk collected at milkings 1 to 4 and 5 to 8, respectively. Dry matter intake (mean = 25.5 kg/d for both treatment groups); yields of milk (mean = 31.5 kg/d for both treatment groups), protein, fat, lactose, and fat- and protein-corrected milk (mean = 33.6 kg/d for both treatment groups); and milk concentration of protein, fat, and lactose did not differ between treatments. However, milk urea concentration was higher for OS compared with ST (12.2 vs. 11.3 mg/dL). Body weight, body condition score, NUE, and feed efficiency were unaffected by OS. Apparent total-tract digestibility of dry matter (695 vs. 677 g/kg), organic matter (714 vs. 697 g/kg), CP (624 vs. 594 g/kg), neutral detergent fiber (530 vs. 499 g/kg), and starch (976 vs. 973 g/kg) were higher for OS than for ST cows. Cows in OS responded transiently, and regression analysis of differences within block over time revealed changes in yield of milk (-531 g/d), milk protein (-25.6 g/d), and milk lactose (-16.7 g/d) in LP. Opposite effects were observed for yield of milk (+612 g/d), milk protein (+28.8 g/d), and milk lactose (+28.0 g/d) during HP. Changes in concentrations of milk protein (-0.050%/d), lactose (+0.030%/d), and urea (-3.0 mg/dL per day) during LP, and in milk lactose (-0.024%/d) and urea (+4.3 mg/dL per day) during HP, were observed. Milk yield, lactose yield, and protein yield were lower for OS than ST cows at the last milking of LP and at the first milking of HP. Milk urea concentration did not show such a lag and was lower in the last 2 milkings of LP, and higher in the last 3 milkings of HP, in OS compared with ST cows. Overall, performance and NUE were unaffected by OS treatment, but apparent total-tract digestibility and milk urea concentration increased, and transient effects on milk yield and composition occurred in OS cows.


Subject(s)
Lactation , Nitrogen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Proteins , Digestion , Eating , Female , Pregnancy , Rumen
11.
J Dairy Sci ; 104(4): 4174-4191, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33485681

ABSTRACT

Next to rumen acidosis, other forms of acidosis may also affect lactational performance of cows. Therefore, the effects of hindgut acidosis, induced via abomasal infusion of ground corn, and metabolic acidosis, induced via abomasal infusion of NH4Cl, were studied in cows in early lactation. Observations were made on intake and digestibility of nutrients, lactation performance, energy and N partitioning, blood acid-base status, and rumen and hindgut fermentation characteristics. In a 6 × 6 Latin square design, 6 rumen-fistulated, second-lactation Holstein-Friesian dairy cows (48 ± 17 d in milk) were subjected to 5 d of continuous abomasal infusions of water as control, or solutions of 2.5 mol of NH4Cl/d, 5.0 mol of NH4Cl/d, 3.0 kg of ground corn/d, or the combination of ground corn with either of the 2 NH4Cl levels, followed by 2 d of rest. Treatment solutions were administered via peristaltic pumps through infusion lines attached to the rumen cannula plug and an abomasal infusion line with a flexible disk (equipped with holes to allow digesta passage) to secure its placement through the sulcus omasi. A total mixed ration consisting of 70% grass silage and 30% concentrate (on dry matter basis) was fed at 95% of ad libitum intake of individual cows. The experiment was conducted in climate respiration chambers to determine feed intake, lactation performance, and energy and N balance. Abomasal infusion of NH4Cl affected the acid-base status of the cows, but more strongly when in combination with abomasal infusion of ground corn. Metabolic acidosis (defined as a blood pH < 7.40, blood HCO3 concentration < 25.0 mmol/L, and a negative base excess) was observed with 5.0 mol of NH4Cl/d, 3.0 kg of ground corn/d + 2.5 mol of NH4Cl/d, and 3.0 kg of ground corn/d + 5.0 mol of NH4Cl/d. Metabolic acidosis was associated with decreased milk lactose content, metabolic body weight, energy retained as protein, and fecal N excretion, and increased urine N excretion, and tended to decrease intake of nutrients. Digestibility of several nutrients increased with 5.0 mol of NH4Cl/d, likely as a result of decreased intake. Abomasal ground corn infusion resulted in hindgut acidosis, where fecal pH decreased from 6.86 without ground corn to 6.00 with ground corn, regardless of NH4Cl level. The decrease in fecal pH was likely the result of increased hindgut fermentation, evidenced by increased fecal volatile fatty acid concentrations. Hindgut acidosis was associated with decreased digestibility of nutrients, except for starch, which increased, and crude fat, which was not affected. No systemic inflammatory response was observed, suggesting that the hindgut epithelium was not severely affected by the more acidic conditions or barrier damage. Abomasal infusion of ground corn increased milk yield, milk protein and lactose yield, fecal N excretion, N use efficiency, and total energy retained as well as energy retained in fat, and reduced milk fat content and urine N excretion.


Subject(s)
Acidosis , Cattle Diseases , Acidosis/metabolism , Acidosis/veterinary , Ammonium Chloride , Animals , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Digestion , Female , Fermentation , Lactation , Rumen/metabolism , Silage/analysis , Zea mays
12.
J Dairy Sci ; 104(8): 8479-8492, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34024603

ABSTRACT

The aim of this study was to assess the effects of seasonal variation on the changes of the fatty acid (FA) and triacylglycerol (TAG) composition of bovine milk fat (MF) in a nonseasonal milking system. Weekly milk samples were collected from 14 dairy factories and pooled per week as representative samples of the average Dutch bovine milk. The sample collection started in May 2017 and finished in April 2018, resulting in a total of 52 samples, corresponding to each week of the year. The samples were analyzed for MF content (%) and FA and TAG composition using gas chromatography with flame-ionization detection. The increased intake of C18:3 cis-9,12,15 through grass feeding in spring and summer was associated with major changes in MF FA composition, including reduced proportions of de novo synthesized FA and presence of several rumen biohydrogenation products and conjugated linoleic acid isomers in MF. These changes in seasonal FA composition had an effect on TAG seasonal variation. The TAG seasonal variation showed that all TAG groups were significantly different between months. The low molecular weight and the medium molecular weight TAG groups increased in winter and decreased in summer, whereas the high molecular weight TAG groups increased in summer and decreased in winter. Based on pooled monthly samples, MALDI-TOF-mass spectrometry allowed the analysis of even- and odd-chain TAG species in MF based on their total carbon number and number of double bonds. These analyses indicated saturated TAG species to be greatest in winter, whereas monounsaturated, polyunsaturated, and odd-chain TAG species were greatest in summer. Our study showed that TAG seasonal variation in a nonseasonal milking system is influenced by the variation in FA composition throughout the seasons.


Subject(s)
Fatty Acids , Milk , Animals , Cattle , Diet , Female , Gas Chromatography-Mass Spectrometry/veterinary , Lactation , Seasons , Triglycerides
13.
J Dairy Sci ; 104(12): 12520-12539, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34482977

ABSTRACT

The objectives of this study were to induce hindgut and metabolic acidosis via abomasal infusion of corn starch and ß-hydroxybutyrate (BHB), respectively, and to determine the effects of these physiological states in early-lactation dairy cows. In a 6 × 6 Latin square design, 6 rumen-fistulated Holstein-Friesian dairy cows (66 ± 18 d in milk) were subjected to 5 d of continuous abomasal infusion treatments followed by 2 d of rest. The abomasal infusion treatments followed a 3 × 2 factorial design, with 3 levels of corn starch and 2 levels of BHB. The infusions were water as control, 1.5 kg of corn starch/d, 3.0 kg of corn starch/d, 8.0 mol BHB/d, 1.5 kg of corn starch/d + 8.0 mol BHB/d, or 3.0 kg of corn starch/d + 8.0 mol BHB/d. A total mixed ration consisting of 35.0% grass silage, 37.4% corn silage, and 27.6% concentrate (on a dry matter basis) was fed at 90% of ad libitum intake of individual cows. The experiment was conducted in climate respiration chambers to facilitate determination of energy and N balance. Fecal pH decreased with each level of corn starch infused into the abomasum and was 6.49, 6.00, and 5.15 with 0.0, 1.5, and 3.0 kg of corn starch/d, respectively, suggesting that hindgut acidosis was induced with corn starch infusion. No systemic inflammatory response was observed and the permeability of the intestine or hindgut epithelium was not affected by the more acidic conditions. This induced hindgut acidosis was associated with decreased digestibility of nutrients, except for crude fat and NDF, which were not affected. Induced hindgut acidosis did not affect milk production and composition and energy balance, but increased milk N efficiency. Abomasal infusion of BHB resulted in a compensated metabolic acidosis, which was characterized by a clear disturbance of acid-base status (i.e., decreased blood total CO2, HCO3, and base excess, and a tendency for decreased urinary pH), whereas blood pH remained within a physiologically normal range. Abomasal infusion of BHB resulted in increased concentrations of BHB in milk and plasma, but both remained well below the critical threshold values for subclinical ketosis. Induced compensated metabolic acidosis, as a result of abomasally infused BHB, increased energy retained as body fat, did not affect milk production and composition or inflammatory response, but increased intestinal permeability.


Subject(s)
Acidosis , Cattle Diseases , 3-Hydroxybutyric Acid , Abomasum , Acidosis/veterinary , Animals , Cattle , Diet/veterinary , Digestion , Lactation , Milk , Rumen , Silage/analysis , Starch , Zea mays
14.
Child Dev ; 91(4): 1336-1352, 2020 07.
Article in English | MEDLINE | ID: mdl-31429084

ABSTRACT

This study investigates the dynamic interplay between bullying relationships and friendships in a sample of 481 students in 19 elementary school classrooms (age 8-12 years; 50% boys). Based on a relational framework, it is to be expected that friendships would be formed when two children bullied the same person and that children would start to bully the victims of their friends. Similarly, it is to be expected that friendships would be formed when two children were victimized by the same bully and that children would become victimized by the bullies of their friends. Longitudinal bivariate social network analysis supported the first two hypotheses but not the latter two. This study provides evidence for group processes in bullying networks in childhood.


Subject(s)
Bullying , Group Processes , Social Network Analysis , Child , Crime Victims , Female , Friends , Humans , Longitudinal Studies , Male , Peer Group , Schools , Students , Surveys and Questionnaires
15.
J Dairy Sci ; 103(9): 8074-8093, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32600756

ABSTRACT

The aim of this study was to determine the methane (CH4) mitigation potential of 3-nitrooxypropanol and the persistency of its effect when fed to dairy cows in early lactation. Sixteen Holstein-Friesian cows (all multiparous; 11 cows in their second parity and 5 cows in their third parity) were blocked in pairs, based on actual calving date, parity, and previous lactation milk yield, and randomly allocated to 1 of 2 dietary treatments: a diet including 51 mg of 3-nitrooxypropanol/kg of dry matter (3-NOP) and a diet including a placebo at the same concentration (CON). Cows were fed a 35% grass silage, 25% corn silage, and 40% concentrate (on dry matter basis) diet from 3 d after calving up to 115 d in milk (DIM). Every 4 weeks, the cows were housed in climate respiration chambers for 5 d to measure lactation performance, feed and nutrient intake, apparent total-tract digestibility of nutrients, energy and N metabolism, and gaseous exchange (4 chamber visits per cow in total, representing 27, 55, 83, and 111 DIM). Feeding 3-NOP did not affect dry matter intake (DMI), milk yield, milk component yield, or feed efficiency. These variables were affected by stage of lactation, following the expected pattern of advanced lactation. Feeding 3-NOP did not affect CH4 production (g/d) at 27 and 83 DIM, but decreased CH4 production at 55 and 111 DIM by an average of 18.5%. This response in CH4 production is most likely due to the differences observed in feed intake across the different stages of lactation because CH4 yield (g/kg of DMI) was lower (on average 16%) at each stage of lactation upon feeding 3-NOP. On average, feeding 3-NOP increased H2 production and intensity 12-fold; with the control diet, H2 yield did not differ between the different stages of lactation, whereas with the 3-NOP treatment H2 yield decreased from 0.429 g/kg of DMI at 27 DIM to 0.387 g/kg of DMI at 111 DIM. The apparent total-tract digestibility of dry matter, organic matter, neutral detergent fiber, and gross energy was greater for the 3-NOP treatment. In comparison to the control treatment, 3-NOP did not affect energy and N balance, except for a greater metabolizable energy intake to gross energy intake ratio (65.4 and 63.7%, respectively) and a greater body weight gain (average 0.90 and 0.01% body weight change, respectively). In conclusion, feeding 3-NOP is an effective strategy to decrease CH4 emissions (while increasing H2 emission) in early lactation Holstein-Friesian cows with positive effects on apparent total-tract digestibility of nutrients.


Subject(s)
Digestion/drug effects , Energy Metabolism/drug effects , Hydrogen/metabolism , Methane/metabolism , Propanols/pharmacology , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Energy Intake , Female , Lactation/physiology , Milk/metabolism , Nutrients/metabolism , Poaceae/metabolism , Pregnancy , Random Allocation , Silage , Zea mays/metabolism
16.
J Res Adolesc ; 30(1): 63-77, 2020 03.
Article in English | MEDLINE | ID: mdl-30969005

ABSTRACT

The aim of this study was to unravel the interrelatedness of friendship and help, and to examine the characteristics of friendship and help networks. The effects of mutual versus one-sided help relations on friendship initiation and maintenance, and vice versa, were examined. Friendship and help networks were analyzed (N = 953 students; 41 classrooms; Mage  = 12.7). The results illustrate that friendship and help networks show some similarities, but only partly overlap and have distinct characteristics. Longitudinal multiplex social network analyses showed that mutual help was important for the maintenance of friendship, but not for the initiation of friendship. Further, particularly mutual friendships provided a context in which help took place. Implications of these findings are discussed.


Subject(s)
Adolescent Behavior/psychology , Friends/psychology , Interpersonal Relations , Social Networking , Adolescent , Child , Female , Humans , Longitudinal Studies , Male
17.
J Youth Adolesc ; 49(3): 678-692, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31811445

ABSTRACT

Whereas previous research suggests that adolescents' aggressive behavior in itself does not highlight ethnic boundaries, it remains unclear whether classmates' responses to same- and cross-ethnic aggression strengthen ethnic boundaries. This study examined how adolescents' aggression toward same- and cross-ethnic peers relates to the positive (friendship) and negative (rejection) relationship nominations they receive from same- and cross-ethnic classmates. Cross-sectional peer nomination data on 917 Dutch and 125 Turkish adolescents in 56 secondary schools were analyzed (mean age = 14.9 year; 51.4% boys). Adolescents received more friendship nominations from same-ethnic than from cross-ethnic classmates, but were not more rejected by cross-ethnic than same-ethnic classmates. Multilevel Poisson and negative binomial regression models showed that, irrespective of aggressor's ethnic background, adolescents' aggressive behavior was related to rejection by classmates from the ethnic group that was the target of aggression and to being befriended by classmates from the ethnic group that was not the target of aggression. Specifically, both Dutch and Turkish adolescents who were aggressive toward Dutch peers were rejected by Dutch classmates and befriended by Turkish classmates and vice versa. These findings suggest that classmates' positive and negative responses to adolescents are related to adolescents' aggressive behavior based on the ethnic background of the victim, not on the ethnic background of the aggressor. This suggests that integration between ethnic groups in schools relates to aggression in general, not only cross-ethnic aggression.


Subject(s)
Adolescent Behavior/psychology , Aggression/psychology , Ethnicity/psychology , Friends/psychology , Peer Group , Rejection, Psychology , Adolescent , Cross-Sectional Studies , Female , Humans , Male , Models, Psychological , Netherlands , Psychology, Adolescent , Regression Analysis , Schools , Students/psychology , Turkey
18.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 12-21, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31579969

ABSTRACT

This study investigated the chemical composition (proximate and Van Soest analysis) and in vitro gas production parameters of maize leaves and stems separately, and related the in vitro gas production parameters with the chemical composition, of thirteen maize cultivars. After harvest in September 2016, all plants were separated into two morphological fractions: leaves and stems. The crude protein (CP) content was greater, and the ratio of acid detergent lignin (ADL) to potentially rumen degradable fibre (calculated as the difference between neutral detergent fibre and ADL; ADL:pRDF) was lower in the leaves than in the stems in all 13 cultivars. For the leaves, the cumulative gas production between 3 and 20 hr (A2), representing cell wall fermentation in the rumen fluid, and the cumulative 72-hr gas production (GP72), representing total organic matter (OM) degradation, were moderately to weakly correlated with the chemical composition, including hemicellulose, cellulose, ADL and CP content (R2  < 0.40), whilst the best relationship between the half-time value (B2), representing the rate of cell wall degradation, and chemical composition had an R2 of 0.63. For the stems, the best relationship between A2, B2 and GP72 with chemical composition was greater (R2  ≥ 0.74) and the best relationship included hemicellulose (A2 only), cellulose and ADL (GP72 and A2 only) contents. In conclusion, maize leaves and stems differed in chemical composition, in particular CP content and ADL:pRDF. The A2 and GP72 of the stems, but not of the leaves, were highly correlated with the chemical composition, indicating that the cell wall and OM degradation of maize stems can be better predicted by its chemical composition.


Subject(s)
Plant Leaves/chemistry , Plant Stems/chemistry , Zea mays/chemistry , Bioreactors , Cell Wall , Dietary Fiber , Fermentation , Plant Leaves/metabolism , Plant Stems/metabolism , Zea mays/metabolism
19.
J Youth Adolesc ; 49(11): 2229-2245, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32789721

ABSTRACT

Homophobic attitudes and behavior are a widespread problem among adolescents, but what the role of peer relationships such as friendships and antipathies is in shaping these attitudes remains unclear. Therefore, this study examined to what extent homophobic attitudes are influenced by friends' and foes' homophobic attitudes, and whether homophobic attitudes serve as a selection criterion for the formation of friendships and antipathies. Participants came from three Dutch high schools across two waves (wave 1 November 2014, wave 2 March/April 2015, ages 11-20, N = 1935, 51.5% girls). Stochastic actor-oriented models were estimated for testing hypotheses. The results showed that adolescents adjusted their homophobic attitudes to their friends' homophobic attitudes, but homophobic attitudes were not consistently related to friendship selection. Further, findings indicated that being dissimilar in homophobic attitudes increased the likelihood to dislike cross-sex peers. Together, the findings suggest that adolescents' homophobic attitudes were to some extent subject to peer influence, but homophobic attitudes did not steer who adolescents befriended or disliked.


Subject(s)
Adolescent Behavior , Friends , Adolescent , Adult , Attitude , Child , Female , Humans , Peer Group , Peer Influence , Young Adult
20.
J Youth Adolesc ; 49(3): 645-663, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31407189

ABSTRACT

Prior work has shown that popular peers can set a powerful norm for the valence and salience of aggression in adolescent classrooms, which enhances aggressive friendship processes (selection, maintenance, influence). It is unknown, however, whether popular peers also set a norm for prosocial behavior that can buffer against aggressive friendship processes and stimulate prosocial friendship processes. This study examined the role of prosocial and aggressive popularity norm combinations in prosocial and aggressive friendship processes. Three waves of peer-nominated data were collected in the first- and second year of secondary school (N = 1816 students; 81 classrooms; Mage = 13.06; 50.5% girl). Longitudinal social network analyses indicate that prosocial popularity norms have most power to affect both prosocial and aggressive friendship processes when aggressive popularity norms are non-present. In prosocial classrooms (low aggressive and high prosocial popularity norms), friendship maintenance based on prosocial behavior is enhanced, whereas aggressive friendship processes are largely mitigated. Instead, when aggressive popularity norms are equally strong as prosocial norms (mixed classrooms) or even stronger than prosocial norms (aggressive classrooms), aggression is more important for friendship processes than prosocial behavior. These findings show that the prosocial behavior of popular peers may only buffer against aggressive friendship processes and stimulate prosocial friendship processes if these popular peers (or other popular peers in the classroom) abstain from aggression.


Subject(s)
Adolescent Behavior/psychology , Aggression/psychology , Friends/psychology , Psychological Distance , Social Networking , Social Norms , Adolescent , Female , Hierarchy, Social , Humans , Longitudinal Studies , Male , Peer Group , Schools , Social Behavior , Social Dominance , Students/psychology
SELECTION OF CITATIONS
SEARCH DETAIL