Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Proc Natl Acad Sci U S A ; 121(6): e2317461121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289961

ABSTRACT

Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Mutation , Acclimatization/genetics , Arabidopsis Proteins/genetics , Transcription Factors/genetics , Cold Temperature , Genetic Fitness
2.
Plant J ; 118(6): 2169-2187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558472

ABSTRACT

Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.


Subject(s)
Acyltransferases , Arabidopsis Proteins , Arabidopsis , Genome-Wide Association Study , Phenylacetates , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Phenylacetates/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
3.
Plant Physiol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709680

ABSTRACT

Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.

4.
Proc Natl Acad Sci U S A ; 119(40): e2212199119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161933

ABSTRACT

Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.


Subject(s)
Arabidopsis , Gravitropism , Arabidopsis/genetics , Cellulose , Gravitropism/genetics , Phosphatidylcholines , Plant Roots/genetics , Polymers , Quantitative Trait Loci , Transcription Factors/genetics , Zea mays/genetics
5.
Plant J ; 115(1): 97-107, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36995355

ABSTRACT

Identification of unknown metabolites and their biosynthetic genes is an active research area in plant specialized metabolism. By following a gene-metabolite association from a genome-wide association study of Arabidopsis stem metabolites, we report a previously unknown metabolite, 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid glucoside, and demonstrated that UGT76F1 is responsible for its production in Arabidopsis. The chemical structure of the glucoside was determined by a series of analyses, including tandem MS, acid and base hydrolysis, and NMR spectrometry. T-DNA knockout mutants of UGT76F1 are devoid of the glucoside but accumulate increased levels of the aglycone. 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid is structurally related to the C7-necic acid component of lycopsamine-type pyrrolizidine alkaloids such as trachelantic acid and viridifloric acid. Feeding norvaline greatly enhances the accumulation of 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid glucoside in wild-type but not the UGT76F1 knockout mutant plants, providing evidence for an orthologous C7-necic acid biosynthetic pathway in Arabidopsis despite the apparent lack of pyrrolizidine alkaloids.


Subject(s)
Arabidopsis , Pyrrolizidine Alkaloids , Arabidopsis/genetics , Arabidopsis/metabolism , Genome-Wide Association Study , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/metabolism , Plants/metabolism , Glucosides
6.
Plant J ; 113(5): 887-903, 2023 03.
Article in English | MEDLINE | ID: mdl-36628472

ABSTRACT

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best strategies to control these losses is through breeding for disease resistance. One barrier to the identification of resistance genes is the quantification of disease severity, which is typically based on the determination of a subjective score by a human observer. We hypothesized that image-based, non-destructive measurements of plant morphology over an extended period after pathogen infection would capture subtle quantitative differences between genotypes, and thus enable identification of new disease resistance loci. To test this, we inoculated a genetically diverse biparental mapping population of tomato (Solanum lycopersicum) with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease. We acquired over 40 000 time-series images of disease progression in this population, and developed an image analysis pipeline providing a suite of 10 traits to quantify bacterial wilt disease based on plant shape and size. Quantitative trait locus (QTL) analyses using image-based phenotyping for single and multi-traits identified QTLs that were both unique and shared compared with those identified by human assessment of wilting, and could detect QTLs earlier than human assessment. Expanding the phenotypic space of disease with image-based, non-destructive phenotyping both allowed earlier detection and identified new genetic components of resistance.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Humans , Solanum lycopersicum/genetics , Disease Resistance/genetics , Plant Breeding , Quantitative Trait Loci/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Progression
7.
Plant Physiol ; 192(2): 1016-1027, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36905371

ABSTRACT

The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phenotype , Phylogeny , Plant Roots/metabolism
8.
Plant Cell ; 33(3): 492-510, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33955498

ABSTRACT

The optimal extraction of information from untargeted metabolomics analyses is a continuing challenge. Here, we describe an approach that combines stable isotope labeling, liquid chromatography- mass spectrometry (LC-MS), and a computational pipeline to automatically identify metabolites produced from a selected metabolic precursor. We identified the subset of the soluble metabolome generated from phenylalanine (Phe) in Arabidopsis thaliana, which we refer to as the Phe-derived metabolome (FDM) In addition to identifying Phe-derived metabolites present in a single wild-type reference accession, the FDM was established in nine enzymatic and regulatory mutants in the phenylpropanoid pathway. To identify genes associated with variation in Phe-derived metabolites in Arabidopsis, MS features collected by untargeted metabolite profiling of an Arabidopsis diversity panel were retrospectively annotated to the FDM and natural genetic variants responsible for differences in accumulation of FDM features were identified by genome-wide association. Large differences in Phe-derived metabolite accumulation and presence/absence variation of abundant metabolites were observed in the nine mutants as well as between accessions from the diversity panel. Many Phe-derived metabolites that accumulated in mutants also accumulated in non-Col-0 accessions and was associated to genes with known or suspected functions in the phenylpropanoid pathway as well as genes with no known functions. Overall, we show that cataloguing a biochemical pathway's products through isotopic labeling across genetic variants can substantially contribute to the identification of metabolites and genes associated with their biosynthesis.


Subject(s)
Arabidopsis/metabolism , Genome-Wide Association Study/methods , Metabolome/physiology , Arabidopsis/genetics , Isotope Labeling , Mass Spectrometry , Metabolome/genetics , Metabolomics/methods , Retrospective Studies
9.
Plant J ; 112(2): 493-517, 2022 10.
Article in English | MEDLINE | ID: mdl-36050832

ABSTRACT

The plant hormone gibberellin (GA) impacts plant growth and development differently depending on the developmental context. In the maize (Zea mays) tassel, application of GA alters floral development, resulting in the persistence of pistils. GA signaling is achieved by the GA-dependent turnover of DELLA domain transcription factors, encoded by dwarf8 (d8) and dwarf9 (d9) in maize. The D8-Mpl and D9-1 alleles disrupt GA signaling, resulting in short plants and normal tassel floret development in the presence of excess GA. However, D9-1 mutants are unable to block GA-induced pistil development. Gene expression in developing tassels of D8-Mpl and D9-1 mutants and their wild-type siblings was determined upon excess GA3 and mock treatments. Using GA-sensitive transcripts as reporters of GA signaling, we identified a weak loss of repression under mock conditions in both mutants, with the effect in D9-1 being greater. D9-1 was also less able to repress GA signaling in the presence of excess GA3 . We treated a diverse set of maize inbred lines with excess GA3 and measured the phenotypic consequences on multiple aspects of development (e.g., height and pistil persistence in tassel florets). Genotype affected all GA-regulated phenotypes but there was no correlation between any of the GA-affected phenotypes, indicating that the complexity of the relationship between GA and development extends beyond the two-gene epistasis previously demonstrated for GA and brassinosteroid biosynthetic mutants.


Subject(s)
Arabidopsis Proteins , Gibberellins , Gibberellins/metabolism , Zea mays/metabolism , Plant Growth Regulators/metabolism , Inflorescence/metabolism , Brassinosteroids/metabolism , Plants/metabolism , Transcription Factors/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Arabidopsis Proteins/metabolism
10.
Plant Cell ; 32(7): 2141-2157, 2020 07.
Article in English | MEDLINE | ID: mdl-32327535

ABSTRACT

Plant cellulose is synthesized by rosette-structured cellulose synthase (CESA) complexes (CSCs). Each CSC is composed of multiple subunits of CESAs representing three different isoforms. Individual CESA proteins contain conserved catalytic domains for catalyzing cellulose synthesis, other domains such as plant-conserved sequences, and class-specific regions that are thought to facilitate complex assembly and CSC trafficking. Because of the current lack of atomic-resolution structures for plant CSCs or CESAs, the molecular mechanism through which CESA catalyzes cellulose synthesis and whether its catalytic activity influences efficient CSC transport at the subcellular level remain unknown. Here, by performing chemical genetic analyses, biochemical assays, structural modeling, and molecular docking, we demonstrate that Endosidin20 (ES20) targets the catalytic site of CESA6 in Arabidopsis (Arabidopsis thaliana). Chemical genetic analysis revealed important amino acids that potentially participate in the catalytic activity of plant CESA6, in addition to previously identified conserved motifs across kingdoms. Using high spatiotemporal resolution live cell imaging, we found that inhibiting the catalytic activity of CESA6 by ES20 treatment reduced the efficiency of CSC transport to the plasma membrane. Our results demonstrate that ES20 is a chemical inhibitor of CESA activity and trafficking that represents a powerful tool for studying cellulose synthesis in plants.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Cellulose/biosynthesis , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Fluorescence Recovery After Photobleaching , Glucosyltransferases/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Docking Simulation , Mutation , Plants, Genetically Modified , Protein Conformation
11.
Mol Plant Microbe Interact ; 34(6): 606-616, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33507801

ABSTRACT

The maize gene Rp1-D21 is a mutant form of the gene Rp1-D that confers resistance to common rust. Rp1-D21 triggers a spontaneous defense response that occurs in the absence of the pathogen and includes a programed cell death called the hypersensitive response (HR). Eleven plants heterozygous for Rp1-D21, in four different genetic backgrounds, were identified that had chimeric leaves with lesioned sectors showing HR abutting green nonlesioned sectors lacking HR. The Rp1-D21 sequence derived from each of the lesioned portions of leaves was unaltered from the expected sequence whereas the Rp1-D21 sequences from nine of the nonlesioned sectors displayed various mutations, and we were unable to amplify Rp1-D21 from the other two nonlesioned sectors. In every case, the borders between the sectors were sharp, with no transition zone, suggesting that HR and chlorosis associated with Rp1-D21 activity was cell autonomous. Expression of defense response marker genes was assessed in the lesioned and nonlesioned sectors as well as in near-isogenic plants lacking and carrying Rp1-D21. Defense gene expression was somewhat elevated in nonlesioned sectors abutting sectors carrying Rp1-D21 compared with near-isogenic plants lacking Rp1-D21. This suggests that, whereas the HR itself was cell autonomous, other aspects of the defense response initiated by Rp1-D21 were not.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Basidiomycota , Zea mays , Disease Resistance/genetics , Plant Diseases/genetics , Plant Leaves , Plant Proteins/genetics , Zea mays/genetics
12.
Plant Physiol ; 184(1): 300-315, 2020 09.
Article in English | MEDLINE | ID: mdl-32641472

ABSTRACT

Chlorophyll is a tetrapyrrole metabolite essential for photosynthesis in plants. The first committed step of chlorophyll biosynthesis is catalyzed by a multimeric enzyme, magnesium chelatase, the subunit I of which is encoded by the oil yellow1 (oy1) gene in maize (Zea mays). A range of chlorophyll contents and net CO2 assimilation rates can be achieved in maize by combining a semidominant mutant allele of oy1 (Oy1-N1989) and a cis-regulatory modifier named very oil yellow1 (vey1) that varies between different inbred lines. We previously demonstrated that these allelic interactions can delay reproductive maturity. In this study, we demonstrate that multiple gross morphological traits respond to a reduction in chlorophyll. We found that stalk width, number of lateral branches (tillers), and branching of the inflorescence decline with a decrease in chlorophyll level. Chlorophyll deficit suppressed tillering in multiple maize mutants, including teosinte branched1, Tillering1, and grassy tillers1 In contrast to these traits, plant height showed a nonlinear response to chlorophyll levels. Weak suppression of Oy1-N1989 by vey1 B73 resulted in a significant increase in mutant plant height. By contrast, enhancement of the severity of the Oy1-N1989 phenotype by the vey1 Mo17 allele resulted in reduced plant height. We demonstrate that the effects of reduced chlorophyll contents on plant growth and development are complex and depend on the trait being measured. We propose that the lack of chlorophyll exerts growth control via energy balance sensing, which is upstream of the known genetic networks for branching and architecture.


Subject(s)
Chlorophyll/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Carbon Monoxide/metabolism , Inflorescence/metabolism , Lyases/metabolism , Plant Proteins/genetics , Zea mays/genetics
13.
Plant Cell ; 30(1): 48-66, 2018 01.
Article in English | MEDLINE | ID: mdl-29263085

ABSTRACT

Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.


Subject(s)
Brassinosteroids/pharmacology , Cell Differentiation/drug effects , Inflorescence/cytology , Meristem/cytology , Setaria Plant/cytology , Alleles , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant/drug effects , Genetic Loci , Inflorescence/drug effects , Inflorescence/ultrastructure , Meristem/drug effects , Models, Biological , Mutation/genetics , Phenotype , Phylogeny , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Setaria Plant/drug effects , Setaria Plant/genetics , Setaria Plant/ultrastructure , Signal Transduction/drug effects
14.
Plant Cell ; 30(12): 2922-2942, 2018 12.
Article in English | MEDLINE | ID: mdl-30413654

ABSTRACT

Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.


Subject(s)
Genome-Wide Association Study/methods , Zea mays/genetics , Linkage Disequilibrium/genetics , Software
15.
PLoS Pathog ; 14(10): e1007356, 2018 10.
Article in English | MEDLINE | ID: mdl-30332488

ABSTRACT

Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.


Subject(s)
Disease Resistance , Helminthosporium/physiology , Oxidoreductases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Virulence , Zea mays/microbiology , Oxidoreductases/metabolism , Phenotype , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/growth & development
16.
Plant Cell ; 29(12): 3269-3285, 2017 12.
Article in English | MEDLINE | ID: mdl-29203634

ABSTRACT

The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Epistasis, Genetic , Mediator Complex/genetics , Propanols/metabolism , Protein Subunits/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Conserved Sequence , DNA, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Suppressor , Lignin/metabolism , Malates/metabolism , Mediator Complex/chemistry , Mediator Complex/metabolism , Mutation, Missense/genetics , Phenotype , Phenylpropionates/metabolism , Solubility , Stress, Physiological/genetics , Suppression, Genetic
17.
PLoS Genet ; 12(9): e1006298, 2016 09.
Article in English | MEDLINE | ID: mdl-27622452

ABSTRACT

Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Epigenesis, Genetic , Homeostasis , Nuclear Proteins/genetics , S-Adenosylmethionine/metabolism , Active Transport, Cell Nucleus , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , DNA Methylation , Glutathione/metabolism , Nuclear Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 112(37): 11726-31, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26324904

ABSTRACT

Plants produce diverse low-molecular-weight compounds via specialized metabolism. Discovery of the pathways underlying production of these metabolites is an important challenge for harnessing the huge chemical diversity and catalytic potential in the plant kingdom for human uses, but this effort is often encumbered by the necessity to initially identify compounds of interest or purify a catalyst involved in their synthesis. As an alternative approach, we have performed untargeted metabolite profiling and genome-wide association analysis on 440 natural accessions of Arabidopsis thaliana. This approach allowed us to establish genetic linkages between metabolites and genes. Investigation of one of the metabolite-gene associations led to the identification of N-malonyl-D-allo-isoleucine, and the discovery of a novel amino acid racemase involved in its biosynthesis. This finding provides, to our knowledge, the first functional characterization of a eukaryotic member of a large and widely conserved phenazine biosynthesis protein PhzF-like protein family. Unlike most of known eukaryotic amino acid racemases, the newly discovered enzyme does not require pyridoxal 5'-phosphate for its activity. This study thus identifies a new d-amino acid racemase gene family and advances our knowledge of plant d-amino acid metabolism that is currently largely unexplored. It also demonstrates that exploitation of natural metabolic variation by integrating metabolomics with genome-wide association is a powerful approach for functional genomics study of specialized metabolism.


Subject(s)
Amino Acid Isomerases/physiology , Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Arabidopsis/genetics , Amino Acid Isomerases/genetics , Arabidopsis Proteins/genetics , Chromatography, High Pressure Liquid , Chromatography, Liquid , Chromosome Mapping , Gene Expression Regulation, Plant , Genetic Variation , Genome-Wide Association Study , Genomics , Genotype , Isoleucine/analogs & derivatives , Isoleucine/chemistry , Mass Spectrometry , Metabolomics , Mutation , Quantitative Trait Loci , Stereoisomerism
19.
Plant Physiol ; 170(4): 1989-98, 2016 04.
Article in English | MEDLINE | ID: mdl-26896393

ABSTRACT

Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement.


Subject(s)
Environment , Genetic Variation , Seeds/genetics , Sorghum/genetics , Genome-Wide Association Study , Inheritance Patterns/genetics , Models, Biological , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
20.
Plant Physiol ; 171(4): 2633-47, 2016 08.
Article in English | MEDLINE | ID: mdl-27288361

ABSTRACT

A small number of phytohormones dictate the pattern of plant form affecting fitness via reproductive architecture and the plant's ability to forage for light, water, and nutrients. Individual phytohormone contributions to plant architecture have been studied extensively, often following a single component of plant architecture, such as plant height or branching. Both brassinosteroid (BR) and gibberellin (GA) affect plant height, branching, and sexual organ development in maize (Zea mays). We identified the molecular basis of the nana plant2 (na2) phenotype as a loss-of-function mutation in one of the two maize paralogs of the Arabidopsis (Arabidopsis thaliana) BR biosynthetic gene DWARF1 (DWF1). These mutants accumulate the DWF1 substrate 24-methylenecholesterol and exhibit decreased levels of downstream BR metabolites. We utilized this mutant and known GA biosynthetic mutants to investigate the genetic interactions between BR and GA. Double mutants exhibited additivity for some phenotypes and epistasis for others with no unifying pattern, indicating that BR and GA interact to affect development but in a context-dependent manner. Similar results were observed in double mutant analyses using additional BR and GA biosynthetic mutant loci. Thus, the BR and GA interactions were neither locus nor allele specific. Exogenous application of GA3 to na2 and d5, a GA biosynthetic mutant, also resulted in a diverse pattern of growth responses, including BR-dependent GA responses. These findings demonstrate that BR and GA do not interact via a single inclusive pathway in maize but rather suggest that differential signal transduction and downstream responses are affected dependent upon the developmental context.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Brassinosteroids/metabolism , Gibberellins/metabolism , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Zea mays/growth & development , Zea mays/genetics , Alleles , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Loci , Models, Biological , Mutation/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL