Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 22(16): 5303-7, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22795627

ABSTRACT

Complement C1s protease inhibitors have potential utility in the treatment of diseases associated with activation of the classical complement pathway such as humorally mediated graft rejection, ischemia-reperfusion injury (IRI), vascular leak syndrome, and acute respiratory distress syndrome (ARDS). The utility of biphenylsulfonyl-thiophene-carboxamidine small-molecule C1s inhibitors are limited by their poor in vivo pharmacokinetic properties. Pegylation of a potent analog has provided compounds with good potency and good in vivo pharmacokinetic properties.


Subject(s)
Amides/chemistry , Complement C1s/antagonists & inhibitors , Drug Design , Polyethylene Glycols/chemistry , Protease Inhibitors/chemical synthesis , Thiophenes/chemistry , Animals , Complement C1s/metabolism , Half-Life , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats
2.
J Med Chem ; 64(15): 11570-11596, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34279934

ABSTRACT

Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.


Subject(s)
Antineoplastic Agents/pharmacology , Celecoxib/pharmacology , Colorectal Neoplasms/drug therapy , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Etoricoxib/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Celecoxib/chemistry , Celecoxib/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Etoricoxib/chemistry , Etoricoxib/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL