Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Proc Natl Acad Sci U S A ; 116(28): 13729-13737, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31213534

ABSTRACT

Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of ß-galactose-binding galectins.


Subject(s)
Galectins/genetics , N-Acetylhexosaminyltransferases/genetics , Neoplasms/genetics , Polysaccharides/genetics , Carbohydrates/chemistry , Carbohydrates/genetics , Carrier Proteins/genetics , Disease Progression , Glycosylation , Humans , Integrins/genetics , Lectins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Polysaccharides/metabolism , Receptors, Growth Factor/genetics , Signal Transduction
2.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555198

ABSTRACT

Galectins are a family of ß-galactoside-binding proteins that play a variety of roles in normal physiology. In cancer, their expression levels are typically elevated and often associated with poor prognosis. They are known to fuel a variety of cancer progression pathways through their glycan-binding interactions with cancer, stromal, and immune cell surfaces. Of the 15 galectins in mammals, galectin (Gal)-1, -3, and -9 are particularly notable for their critical roles in tumor immune escape. While these galectins play integral roles in promoting cancer progression, they are also instrumental in regulating the survival, differentiation, and function of anti-tumor T cells that compromise anti-tumor immunity and weaken novel immunotherapies. To this end, there has been a surge in the development of new strategies to inhibit their pro-malignancy characteristics, particularly in reversing tumor immunosuppression through galectin-glycan ligand-targeting methods. This review examines some new approaches to evading Gal-1, -3, and -9-ligand interactions to interfere with their tumor-promoting and immunoregulating activities. Whether using neutralizing antibodies, synthetic peptides, glyco-metabolic modifiers, competitive inhibitors, vaccines, gene editing, exo-glycan modification, or chimeric antigen receptor (CAR)-T cells, these methods offer new hope of synergizing their inhibitory effects with current immunotherapeutic methods and yielding highly effective, durable responses.


Subject(s)
Galectins , Neoplasms , Animals , Humans , Galectin 1 , Galectins/metabolism , Immunotherapy , Ligands , Neoplasms/therapy , Polysaccharides/metabolism
3.
J Autoimmun ; 117: 102575, 2021 02.
Article in English | MEDLINE | ID: mdl-33285511

ABSTRACT

Humoral immunity is reliant on efficient recruitment of circulating naïve B cells from blood into peripheral lymph nodes (LN) and timely transition of naive B cells to high affinity antibody (Ab)-producing cells. Current understanding of factor(s) coordinating B cell adhesion, activation and differentiation within LN, however, is incomplete. Prior studies on naïve B cells reveal remarkably strong binding to putative immunoregulator, galectin (Gal)-9, that attenuates BCR activation and signaling, implicating Gal-9 as a negative regulator in B cell biology. Here, we investigated Gal-9 localization in human tonsils and LNs and unearthed conspicuously high expression of Gal-9 on high endothelial and post-capillary venules. Adhesion analyses showed that Gal-9 can bridge human circulating and naïve B cells to vascular endothelial cells (EC), while decelerating transendothelial migration. Moreover, Gal-9 interactions with naïve B cells induced global transcription of gene families related to regulation of cell signaling and membrane/cytoskeletal dynamics. Signaling lymphocytic activation molecule F7 (SLAMF7) was among key immunoregulators elevated by Gal-9-binding, while SLAMF7's cytosolic adapter EAT-2, which is required for cell activation, was eliminated. Gal-9 also activated phosphorylation of pro-survival factor, ERK. Together, these data suggest that Gal-9 promotes B cell - EC interactions while delivering anergic signals to control B cell reactivity.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Endothelium, Vascular/metabolism , Galectins/metabolism , Immunomodulation , Signal Transduction , B-Lymphocytes/cytology , Biomarkers , Cell Adhesion , Cell Communication/immunology , Cell Differentiation/immunology , Cell Movement , Humans , Immunohistochemistry , Immunophenotyping , Lymphocyte Activation , Protein Transport
4.
Glycobiology ; 30(11): 895-909, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32280962

ABSTRACT

Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 µM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.


Subject(s)
Galectin 1/metabolism , Polysaccharides/metabolism , Pregnancy-Specific beta 1-Glycoproteins/metabolism , Female , Galectin 1/chemistry , Humans , Ligands , Polysaccharides/chemistry , Pregnancy , Pregnancy-Specific beta 1-Glycoproteins/chemistry , Pregnancy-Specific beta 1-Glycoproteins/isolation & purification
5.
Blood ; 119(15): 3534-8, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22383798

ABSTRACT

Tumor-derived galectin-1 (Gal-1), a ß-galactoside-binding S-type lectin, has been shown to encourage T-cell death and promote T cell-mediated tumor immune escape. In this report, we show that patients with leukemic cutaneous T-cell lymphomas, known to have limited complexity of their T-cell repertoires, have a predominant T helper type-2 (Th2) cytokine profile and significantly elevated plasma levels of Gal-1 compared with healthy controls. Circulating clonal malignant T cells were a major source of Gal-1. The conditioned supernatant of cultured malignant T cells induced a ß-galactoside-dependent inhibition of normal T-cell proliferation and a Th2 skewing of cytokine production. These data implicate Gal-1 in development of the Th2 phenotype in patients with advanced-stage cutaneous T-cell lymphoma and highlight the Gal-1-Gal-1 ligand axis as a potential therapeutic target for enhancing antitumor immune responses.


Subject(s)
Cell Proliferation , Galectin 1/physiology , Leukemia, T-Cell/immunology , Lymphoma, T-Cell, Cutaneous/immunology , Skin Neoplasms/immunology , T-Lymphocytes/physiology , Th1 Cells/physiology , Cell Survival/immunology , Cells, Cultured , Female , Flow Cytometry , Galectin 1/metabolism , Gene Expression Regulation, Leukemic , Humans , Leukemia, T-Cell/metabolism , Leukemia, T-Cell/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/physiology , Lymphoma, T-Cell, Cutaneous/metabolism , Lymphoma, T-Cell, Cutaneous/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , T-Lymphocytes/metabolism , Th1 Cells/metabolism , Th1 Cells/pathology
6.
J Immunol ; 188(7): 3127-37, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22345665

ABSTRACT

Galectin-1 (Gal-1), a ß-galactoside-binding protein, can alter fate and effector function of Th cells; however, little is known about how Gal-1 induces Th cell differentiation. In this article, we show that both uncommitted and polarized Th cells bound by Gal-1 expressed an immunoregulatory signature defined by IL-10. IL-10 synthesis was stimulated by direct Gal-1 engagement to cell surface glycoproteins, principally CD45, on activated Th cells and enhanced by IL-21 expression through the c-Maf/aryl hydrocarbon receptor pathway, independent of APCs. Gal-1-induced IL-10(+) T cells efficiently suppressed T cell proliferation and T cell-mediated inflammation and promoted the establishment of cancer immune-privileged sites. Collectively, these findings show how Gal-1 functions as a major glycome determinant regulating Th cell development, inflammation, and tumor immunity.


Subject(s)
Galectin 1/pharmacology , Gene Expression Regulation/immunology , Interleukin-10/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Antibodies, Monoclonal/pharmacology , Cytokines/biosynthesis , Cytokines/genetics , Dermatitis, Allergic Contact/immunology , Dermatitis, Allergic Contact/therapy , Dimerization , Galectin 1/antagonists & inhibitors , Galectin 1/genetics , Galectin 1/immunology , Humans , Immune Tolerance , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Interleukin-10/deficiency , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Recombinant Fusion Proteins/pharmacology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/transplantation , Transcription Factors/physiology , Tumor Escape/immunology
7.
Front Immunol ; 15: 1395714, 2024.
Article in English | MEDLINE | ID: mdl-38840921

ABSTRACT

Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of ß-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.


Subject(s)
Cell Adhesion , Endothelium, Vascular , Galectins , Humans , Galectins/metabolism , Animals , Endothelium, Vascular/metabolism , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Endothelial Cells/metabolism , Neoplasms/pathology , Neoplasms/immunology , Neoplasms/metabolism
8.
J Invest Dermatol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38458429

ABSTRACT

Melanoma poses a poor prognosis with high mortality rates upon metastasis. Exploring the molecular mechanisms governing melanoma progression paves the way for developing novel approaches to control melanoma metastasis and ultimately enhance patient survival rates. Extracellular galectin-3 (Gal-3) has emerged as a pleiotropic promoter of melanoma metastasis, exerting varying activities depending on its interacting partner. However, whether intracellular Gal-3 promotes melanoma aggressive behavior remains unknown. In this study, we explored Gal-3 expression in human melanoma tissues as well as in murine melanoma models to examine its causal role in metastatic behavior. We found that Gal-3 expression is downregulated in metastatic melanoma tissues compared with its levels in primary melanomas. Enforced silencing of Gal-3 in melanoma cells promoted migration, invasion, colony formation, in vivo xenograft growth, and metastasis and activated canonical oncogenic signaling pathways. Moreover, loss of Gal-3 in melanoma cells resulted in upregulated the expression of the prometastatic transcription factor NFAT1 and its downstream metastasis-associated proteins, matrix metalloproteinase 3, and IL-8. Overall, our findings implicate melanoma intracellular Gal-3 as a major determinant of its metastatic behavior and reveal a negative regulatory role for Gal-3 on the expression of NFAT1 in melanoma cells.

9.
Adv Cancer Res ; 157: 157-193, 2023.
Article in English | MEDLINE | ID: mdl-36725108

ABSTRACT

Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.


Subject(s)
Galectin 3 , Melanoma , Humans , Galectin 3/metabolism , Melanoma/pathology , Tumor Microenvironment
10.
Front Immunol ; 14: 1127247, 2023.
Article in English | MEDLINE | ID: mdl-36923399

ABSTRACT

Background: Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods: International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results: A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion: Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.


Subject(s)
COVID-19 , Humans , Biomarkers , Galectins/metabolism , Benzamides
11.
J Invest Dermatol ; 143(3): 456-469.e8, 2023 03.
Article in English | MEDLINE | ID: mdl-36174713

ABSTRACT

The prognosis for patients with metastatic melanoma (MM) involving distant organs is grim, and treatment resistance is potentiated by tumor-initiating cells (TICs) that thrive under hypoxia. MM cells, including TICs, express a unique glycome featuring i-linear poly-N-acetyllactosamines through the loss of I-branching enzyme, ß1,6 N-acetylglucosaminyltransferase 2. Whether hypoxia instructs MM TIC development by modulating the glycome signature remains unknown. In this study, we explored hypoxia-dependent alterations in MM glycome‒associated genes and found that ß1,6 N-acetylglucosaminyltransferase 2 was downregulated and a galectin (Gal)-8-ligand axis, involving both extracellular and cell-intrinsic Gal-8, was induced. Low ß1,6 N-acetylglucosaminyltransferase 2 levels correlated with poor patient outcomes, and patient serum samples were elevated for Gal-8. Depressed ß1,6 N-acetylglucosaminyltransferase 2 in MM cells upregulated TIC marker, NGFR/CD271, whereas loss of MM cell‒intrinsic Gal-8 markedly lowered NGFR and reduced TIC activity in vivo. Extracellular Gal-8 bound preferentially to i-linear poly-N-acetyllactosamines on N-glycans of the TIC marker and prometastatic molecule CD44, among other receptors, and activated prosurvival factor protein kinase B. This study reveals the importance of hypoxia governing the MM glycome by enforcing i-linear poly-N-acetyllactosamine and Gal-8 expression. This mechanistic investigation also uncovers glycome-dependent regulation of pro-MM factor, NGFR, implicating i-linear poly-N-acetyllactosamine and Gal-8 as biomarkers and therapeutic targets of MM.


Subject(s)
Galectins , N-Acetylglucosaminyltransferases , Humans , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Ligands
12.
J Biol Chem ; 286(24): 21717-31, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21493714

ABSTRACT

Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLe(X)), and related lectin ligands on effector leukocytes. Based on anti-sLe(X) antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLe(X) formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLe(X) (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLe(X) structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLe(X) on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis.


Subject(s)
Acetylglucosamine/analogs & derivatives , Polysaccharides/chemistry , Acetylation , Acetylglucosamine/chemistry , Amino Sugars/chemistry , Gas Chromatography-Mass Spectrometry/methods , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation , Lectins/chemistry , Leukocytes/metabolism , Ligands , Oligosaccharides/chemistry , Sialyl Lewis X Antigen , beta-Galactosidase/chemistry
13.
Clin Immunol ; 142(2): 107-16, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22019770

ABSTRACT

Galectin-1 (Gal-1) is one of 15 evolutionarily conserved ß-galactoside-binding proteins that display biologically-diverse activities in pathogenesis of inflammation and cancer. Gal-1 is variably expressed on immune cells and endothelial cells, though is commonly found and secreted at high levels in cancer cells. It induces apoptosis in effector T cells through homodimeric binding of N-acetyllactosamines on membrane glycoproteins (Gal-1 ligands). There is also compelling evidence in models of cancer and autoimmunity that recombinant Gal-1 (rGal-1) can potentiate immunoregulatory function of T cells. Here, we review Gal-1's structural and functional features, while analyzing potential drawbacks and technical difficulties inherent to rGal-1's nature. We also describe new Gal-1 preparations that exhibit dimeric stability and functional activity on T cells, providing renewed excitement for studying Gal-1 efficacy and/or use as anti-inflammatory therapeutics. We lastly summarize strategies targeting the Gal-1-Gal-1 ligand axis to circumvent Gal-1-driven immune escape in cancer and boost anti-tumor immunity.


Subject(s)
Galectin 1/immunology , Galectin 1/metabolism , Immunomodulation/immunology , T-Lymphocyte Subsets/immunology , Amino Sugars/immunology , Amino Sugars/metabolism , Animals , Apoptosis/immunology , Cell Survival/immunology , Galectin 1/chemistry , Galectin 1/history , History, 21st Century , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/therapy , Ligands , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Models, Immunological , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , T-Lymphocyte Subsets/metabolism
14.
Glycoconj J ; 29(8-9): 619-25, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22544342

ABSTRACT

Cytotoxic CD8(+) T cells are major players of anti-tumor immune responses, as their functional activity can limit tumor growth and progression. Data show that cytotoxic T cells efficiently control the proliferation of tumor cells through major histocompatibility complex class I-mediated mechanisms; nevertheless, the presence of tumor-infiltrating CD8(+) T cells in lesional tissue does not always correlate with better prognosis and increased survival of cancer patients. Similarly, adoptive transfer of tumor-specific cytotoxic T cells has only shown marginal improvement in life spans of patients with metastatic disease. In this report, we discuss experimental evidence showing that expression of tumor-derived galectins, galectin (Gal)-1, Gal-3 and Gal-9, and concomitant presence of their ligands on the surface of anti-tumor immunocytes directly compromise anti-tumor CD8(+) T cell immune responses and, perhaps, undermine the promise of adoptive CD8(+) T cell immunotherapy. Furthermore, we describe novel strategies designed to counteract Gal-1-, Gal-3- and Gal-9-mediated effects and highlight their targeting potential for creating more effective anti-tumor immune responses. We believe that Gal and their ligands represent an efficacious targeted molecular paradigm that warrants clinical evaluation.


Subject(s)
Galectins/metabolism , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cytotoxicity, Immunologic , Humans , Ligands , Neoplasms/metabolism , Tumor Escape
15.
J Immunol ; 185(8): 4659-72, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20844192

ABSTRACT

Galectin-1 (Gal-1), a ß-galactoside-binding lectin, plays a profound role in modulating adaptive immune responses by altering the phenotype and fate of T cells. Experimental data showing recombinant Gal-1 (rGal-1) efficacy on T cell viability and cytokine production, nevertheless, is controversial due to the necessity of using stabilizing chemicals to help retain Gal-1 structure and function. To address this drawback, we developed a mouse Gal-1 human Ig chimera (Gal-1hFc) that did not need chemical stabilization for Gal-1 ligand recognition, apoptosis induction, and cytokine modulation in a variety of leukocyte models. At high concentrations, Gal-1hFc induced apoptosis in Gal-1 ligand(+) Th1 and Th17 cells, leukemic cells, and granulocytes from synovial fluids of patients with rheumatoid arthritis. Importantly, at low, more physiologic concentrations, Gal-1hFc retained its homodimeric form without losing functionality. Not only did Gal-1hFc-binding trigger IL-10 and Th2 cytokine expression in activated T cells, but members of the CD28 family and several other immunomodulatory molecules were upregulated. In a mouse model of contact hypersensitivity, we found that a non-Fc receptor-binding isoform of Gal-1hFc, Gal-1hFc2, alleviated T cell-dependent inflammation by increasing IL-4(+), IL-10(+), TGF-ß(+), and CD25(high)/FoxP3(+) T cells, and by decreasing IFN-γ(+) and IL-17(+) T cells. Moreover, in human skin-resident T cell cultures, Gal-1hFc diminished IL-17(+) T cells and increased IL-4(+) and IL-10(+) T cells. Gal-1hFc will not only be a useful new tool for investigating the role of Gal-1 ligands in leukocyte death and cytokine stimulation, but for studying how Gal-1-Gal-1 ligand binding shapes the intensity of immune responses.


Subject(s)
Dermatitis, Contact/immunology , Galectin 1/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Animals , Apoptosis/immunology , Blotting, Western , Cell Survival/immunology , Cytokines/biosynthesis , Galectin 1/chemistry , Galectin 1/metabolism , Humans , Immunoprecipitation , Leukocytes/immunology , Ligands , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , Transfection
16.
Proc Natl Acad Sci U S A ; 106(46): 19491-6, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19889975

ABSTRACT

How cancer cells bind to vascular surfaces and extravasate into target organs is an underappreciated, yet essential step in metastasis. We postulate that the metastatic process involves discrete adhesive interactions between circulating cancer cells and microvascular endothelial cells. Sialyl Lewis X (sLe(X)) on prostate cancer (PCa) cells is thought to promote metastasis by mediating PCa cell binding to microvascular endothelial (E)-selectin. Yet, regulation of sLe(X) and related E-selectin ligand expression in PCa cells is a poorly understood factor in PCa metastasis. Here, we describe a glycobiological mechanism regulating E-selectin-mediated adhesion and metastatic potential of PCa cells. We demonstrate that alpha1,3 fucosyltransferases (FT) 3, 6, and 7 are markedly elevated in bone- and liver-metastatic PCa and dictate synthesis of sLe(X) and E-selectin ligands on metastatic PCa cells. Upregulated FT3, FT6, or FT7 expression induced robust PCa PC-3 cell adhesion to bone marrow (BM) endothelium and to inflamed postcapillary venules in an E-selectin-dependent manner. Membrane proteins, CD44, carcinoembryonic antigen (CEA), podocalyxin-like protein (PCLP), and melanoma cell adhesion molecule (MCAM) were major scaffolds presenting E-selectin-binding determinants on FT-upregulated PC-3 cells. Furthermore, elevated FT7 expression promoted PC-3 cell trafficking to and retention in BM through an E-selectin dependent event. These results indicate that alpha1,3 FTs could enhance metastatic efficiency of PCa by triggering an E-selectin-dependent trafficking mechanism.


Subject(s)
Cell Movement , Fucosyltransferases/biosynthesis , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Bone Marrow/enzymology , Bone Marrow/pathology , Bone Marrow Neoplasms/enzymology , Bone Marrow Neoplasms/secondary , CD146 Antigen/metabolism , Carcinoembryonic Antigen/metabolism , Cell Adhesion , E-Selectin/metabolism , Humans , Hyaluronan Receptors/metabolism , Liver/enzymology , Liver/pathology , Liver Neoplasms/enzymology , Liver Neoplasms/secondary , Male , Neoplasm Metastasis , Oligosaccharides/biosynthesis , Sialoglycoproteins/metabolism , Sialyl Lewis X Antigen
17.
Methods Mol Biol ; 2442: 565-580, 2022.
Article in English | MEDLINE | ID: mdl-35320546

ABSTRACT

The reported roles of the ß-galactoside-binding lectin family, known as galectins, in disease development have been advancing at a remarkable pace. Galectins and their glycan counter-receptor ligands are now considered key functional determinants in malignant and metastatic progression, tumor immune evasion, autoimmunity, and immune homeostasis. Their influence in these processes is elicited through coordinated expression in tumor, immune and stromal cellular compartments. While analysis of galectin levels in related research efforts is routinely performed through immunoassays and RT-qPCR, detection, and identification of glycan counter-receptor ligands in their native form on the cell surface has lagged. In this report, we present methods to detect and identify glycan counter-receptor ligands to galectin (Gal)-3 and Gal-9-two galectins at the crosshairs of cancer and immunology research. As a model, we will describe (1) isolation of human B-cell subsets from fresh tonsil tissue, (2) assaying of Gal-3/-9-binding activities on human B cells, and (3) identifying Gal-3/-9 ligands on human B-cell surfaces. These methods, of course, can be implemented on any cell type to provide a cellular and molecular context capable of transmitting a galectin-mediated phenotype. Establishing a galectin-binding activity on specific counter-receptor ligand(s) can help unearth potential critical determinants capable of delivering cellular signals required for disease progression. These advances open new avenues of research investigation that result in novel therapeutic targets and approaches.


Subject(s)
B-Lymphocyte Subsets , Blood Proteins , Galectins , B-Lymphocyte Subsets/immunology , Blood Proteins/genetics , Blood Proteins/metabolism , Galectins/genetics , Galectins/metabolism , Humans , Ligands , Protein Binding , Protein Transport
18.
Cancer Res ; 82(20): 3774-3784, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35980306

ABSTRACT

T-cell immunoglobulin mucin family member 3 (Tim-3) is an immune checkpoint receptor that dampens effector functions and causes terminal exhaustion of cytotoxic T cells. Tim-3 inhibitors are under investigation in immuno-oncology (IO) trials, because blockade of T-cell-Tim-3 enhances antitumor immunity. Here, we identify an additional role for Tim-3 as a growth-suppressive receptor intrinsic to melanoma cells. Inhibition of melanoma cell-Tim-3 promoted tumor growth in both immunocompetent and immunocompromised mice, while melanoma-specific Tim-3 overexpression attenuated tumorigenesis. Ab-mediated Tim-3 blockade inhibited growth of immunogenic murine melanomas in T-cell-competent hosts, consistent with established antitumor effects of T-cell-Tim-3 inhibition. In contrast, Tim-3 Ab administration stimulated tumorigenesis of both highly and lesser immunogenic murine and human melanomas in T-cell-deficient mice, confirming growth-promoting effects of melanoma-Tim-3 antagonism. Melanoma-Tim-3 activation suppressed, while its blockade enhanced, phosphorylation of pro-proliferative downstream MAPK signaling mediators. Finally, pharmacologic MAPK inhibition reversed unwanted Tim-3 Ab-mediated tumorigenesis in T-cell-deficient mice and enhanced desired antitumor activity of Tim-3 interference in T-cell-competent hosts. These results identify melanoma-Tim-3 blockade as a mechanism that antagonizes T-cell-Tim-3-directed IO therapeutic efficacy. They further reveal MAPK targeting as a combination strategy for circumventing adverse consequences of unintended melanoma-Tim-3 inhibition. SIGNIFICANCE: Tim-3 is a growth-suppressive receptor intrinsic to melanoma cells, the blockade of which promotes MAPK-dependent tumorigenesis and thus counteracts antitumor activity of T-cell-directed Tim-3 inhibition.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Melanoma , Animals , Carcinogenesis , Cell Transformation, Neoplastic , Humans , Immunoglobulins , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mucins
19.
J Allergy Clin Immunol ; 121(1): 148-157.e3, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17910894

ABSTRACT

BACKGROUND: Cutaneous lymphocyte-associated antigen (CLA) is a surface glycoprotein expressed by skin-homing T cells. This carbohydrate moiety expressed on mucin-like surface glycoproteins, including P-selectin glycoprotein ligand 1 and CD43, confers binding activity to dermal endothelial E-selectin and is critical for T-cell recruitment to the skin. Vitamin A (retinoic acid [RA]) and the active form of vitamin D3 (1,25 dihydroxyvitamin D3 [1,25D(3)]) have been used to treat certain T cell-mediated inflammatory skin diseases, as well as cutaneous T-cell lymphomas; however, their effect on CLA expression has not been studied. OBJECTIVE: We analyzed the effects of RA and 1,25D(3) on expression of CLA and other lymphocyte-homing receptors on human T cells. METHODS: We cultured human T cells with 1,25D(3) and RA and analyzed the expression of CLA and other homing receptors. We also pretreated mice with either vitamin and then induced an antigen-dependent contact hypersensitivity response. RESULTS: Both RA and 1,25D(3) downregulated expression of the CLA and, in parallel, functional E-selectin ligand. Whereas RA increased expression of the gut-homing receptor alpha4beta7 and reduced L-selectin expression, 1,25D(3) had no effect on other homing receptors. In an in vivo assay treatment with RA or 1,25D(3) downregulated the skin infiltration of effector CD4+ T cells. CONCLUSION: These findings suggest that 1,25D(3) can selectively downregulate CLA expression without influencing lymphocyte migration patterns to other tissues.


Subject(s)
Antigens, Neoplasm/metabolism , Cholecalciferol/pharmacology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Vitamin A/pharmacology , Animals , Antigens, Differentiation, T-Lymphocyte , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Cholecalciferol/administration & dosage , Dermatitis, Contact/drug therapy , Dermatitis, Contact/immunology , Down-Regulation , E-Selectin/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Receptors, Lymphocyte Homing/metabolism , Skin/immunology , T-Lymphocytes/immunology , Vitamin A/administration & dosage
20.
J Clin Invest ; 129(12): 5089-5091, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31710312

ABSTRACT

Cancer immunotherapy and its budding effectiveness at improving patient outcomes has revitalized our hope to fight cancer in a logical and safe manner. Immunotherapeutic approaches to reengage the immune system have largely focused on reversing immune checkpoint inhibitor pathways, which suppress the antitumor response. Although these approaches have generated much excitement, they still lack absolute success. Interestingly, newly described host-tumor sugar chains (glycosylations) and glycosylation-binding proteins (lectins) play key roles in evading the immune system to determine cancer progression. In this issue of the JCI, Nambiar et al. used patient head and neck tumors and a mouse model system to investigate the role of galactose-binding lectin 1 (Gal1) in immunotherapy resistance. The authors demonstrated that Gal1 can affect immune checkpoint inhibitor therapy by increasing immune checkpoint molecules and immunosuppressive signaling in the tumor. Notably, these results suggest that targeting a tumor's glycobiological state will improve treatment efficacy.


Subject(s)
Firearms , Galectin 1 , Animals , Endothelium , Humans , Immunotherapy , Mice , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL