Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38557119

ABSTRACT

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Subject(s)
COVID-19 , Endosomes , Lysosomes , Tetraspanin 24 , Animals , Lysosomes/metabolism , Tetraspanin 24/metabolism , Tetraspanin 24/genetics , Humans , Mice , COVID-19/metabolism , COVID-19/immunology , COVID-19/pathology , Endosomes/metabolism , Mice, Knockout , Vasculitis/metabolism , Mice, Inbred C57BL , SARS-CoV-2 , Inflammation/metabolism , Inflammation/pathology , Sepsis/metabolism
2.
Cell Mol Life Sci ; 80(6): 154, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37204469

ABSTRACT

Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.


Subject(s)
Intestinal Mucosa , Receptors, Interferon , Tetraspanins , Animals , Mice , Clathrin/metabolism , Endocytosis/physiology , Inflammation/metabolism , Interferons/metabolism , Intestinal Mucosa/metabolism , Receptors, Interferon/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism
3.
Cell Mol Life Sci ; 79(7): 389, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773608

ABSTRACT

EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.


Subject(s)
Antigens, CD , Endocytosis , ErbB Receptors , Membrane Proteins , Neoplasms , Antigens, CD/metabolism , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Integrins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology
4.
Circulation ; 130(17): 1493-504, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25149363

ABSTRACT

BACKGROUND: Angiogenesis is crucial for many pathological processes and becomes a therapeutic strategy against diseases ranging from inflammation to cancer. The regulatory mechanism of angiogenesis remains unclear. Although tetraspanin CD82 is widely expressed in various endothelial cells (ECs), its vascular function is unknown. METHODS AND RESULTS: Angiogenesis was examined in Cd82-null mice with in vivo and ex vivo morphogenesis assays. Cellular functions, molecular interactions, and signaling were analyzed in Cd82-null ECs. Angiogenic responses to various stimuli became markedly increased upon Cd82 ablation. Major changes in Cd82-null ECs were enhanced migration and invasion, likely resulting from the upregulated expression of cell adhesion molecules such as CD44 and integrins at the cell surface and subsequently elevated outside-in signaling. Gangliosides, lipid raft clustering, and CD44-membrane microdomain interactions were increased in the plasma membrane of Cd82-null ECs, leading to less clathrin-independent endocytosis and then more surface presence of CD44. CONCLUSIONS: Our study reveals that CD82 restrains pathological angiogenesis by inhibiting EC movement, that lipid raft clustering and cell adhesion molecule trafficking modulate angiogenic potential, that transmembrane protein modulates lipid rafts, and that the perturbation of CD82-ganglioside-CD44 signaling attenuates pathological angiogenesis.


Subject(s)
Endothelial Cells/metabolism , Hyaluronan Receptors/metabolism , Kangai-1 Protein/metabolism , Membrane Microdomains/metabolism , Neovascularization, Pathologic/metabolism , Animals , Cell Adhesion Molecules/metabolism , Cell Line , Cell Movement/physiology , Cytoskeleton/metabolism , Endocytosis/physiology , Endothelial Cells/pathology , Gangliosides/metabolism , Kangai-1 Protein/genetics , Membrane Microdomains/pathology , Mice, Knockout , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Protein Transport/physiology , Signal Transduction/physiology
5.
J Environ Sci (China) ; 25(7): 1458-68, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24218860

ABSTRACT

The sedimentation of metals can preserve the historical record of contaminant input from local and regional sources and provide information on the historical changes in regional water and sediment quality. We report the 210Pb activities and the heavy metal (Cd, Cr, Cu, Mn, Pb and Zn) depth profiles from sediment cores retrieved in 2010. The mean sedimentation rates of 0.85-1.5 cm/yr are determined by 210Pb dating. The sediments in the tidal flat have recorded heavy metal deposition and thus allow the establishment of a connection between the temporal evolution of the heavy metal pollution and the historical changes in the economic development of Lianyungang. The enrichment factors (EF) are calculated to estimate the level of contamination stored in these sediments. The results show that in the studied sites, Cr and Cu display low EF values and are mainly from lithogenic origin. For the other studied trace metals, a great variability in the sedimentary record is observed. Significant anthropogenic enrichment over the last 50 years is revealed at the tidal flat that receives fluvial inputs. Zinc is the element with the highest EF values, followed by the order of Pb > Cd > Mn > Cu and Cr. The temporal variations of the heavy metals peak during the late 1980s to the early 2000s and show a decreasing trend afterward. The pollution intensity of the tidal flat is determined by using EF and the geo-accumulation index (I(geo)), which show that, based on the l(geo) scale, the tidal flat of Haizhou Bay is unpolluted to moderately polluted.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Bays , China , Environmental Monitoring , Geologic Sediments/chemistry , History, 20th Century , History, 21st Century , Metals, Heavy/history , Particle Size , Water Pollutants, Chemical/history
6.
Oncogene ; 42(12): 861-868, 2023 03.
Article in English | MEDLINE | ID: mdl-36788350

ABSTRACT

Experimental studies on immunoglobulin superfamily (IgSF) member EWI2 reveal that it suppresses a variety of solid malignant tumors including brain, lung, skin, and prostate cancers in animal models and inhibits tumor cell movement and growth in vitro. While EWI2 appears to support myeloid leukemia in mouse models and maintain leukemia stem cells. Bioinformatics analyses suggest that EWI2 gene expression is downregulated in glioblastoma but upregulated in melanoma, pancreatic cancer, and liver cancer. The mechanism of action for EWI2 is linked to its inhibition of growth factor receptors and cell adhesion proteins through its associated tetraspanin-enriched membrane domains (TEMDs), by altering the cell surface clustering and endolysosome trafficking/turnover of these transmembrane proteins. Recent studies also show that EWI2 modulates the nuclear translocation of ERK and TFEB to change the activities of these gene expression regulators. For EWI2 relatives including FPRP, IgSF3, and CD101, although their roles in malignant diseases are not fully clear and remain to be determined experimentally, FPRP and IgSF3 likely promote the progression of solid malignant tumors while CD101 seems to modulate immune cells of tumor microenvironment. Distinctive from other tumor regulators, the impacts of EWI subfamily members on solid malignant tumors are likely to be context dependent. In other words, the effect of a given EWI subfamily member on a tumor probably depends on the molecular network and composition of TEMDs in that tumor. Collectively, EWI2 and its relatives are emerged as important regulators of malignant diseases with promising potentials to become anti-cancer therapeutics and cancer therapy targets.


Subject(s)
Antigens, CD , Membrane Proteins , Neoplasms , Animals , Humans , Male , Mice , Immunoglobulins/genetics , Melanoma , Membrane Proteins/metabolism , Neoplasms/metabolism , Prostatic Neoplasms , Tetraspanins/genetics , Tumor Microenvironment , Antigens, CD/metabolism
7.
Scand Cardiovasc J ; 46(5): 295-300, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22655909

ABSTRACT

BACKGROUND: Increasing evidences have been obtained that immune activation and inflammation play critical roles in the pathogenesis of chronic heart failure (CHF). T helper (Th) 17 cells are a newly found pro-inflammatory T cell subtype. We therefore assessed the hypothesis that circulating Th17 cells increased in patients with CHF. Hypothesis. Th17 cells and its cytokine might be elevated in patients with CHF. METHODS: A total of 92 patients with CHF and 59 healthy donors were enrolled in the study. The frequencies of circulating Th17 cells were determined by flow cytometry. The interleukin (IL)-17 protein levels in the serum and supernatant of phytohemagglutinin (PHA)-stimulated periphery blood mononuclear cells (PBMCs) were detected using ELISA and the mRNA expression of retinoic acid-related orphan receptor (ROR)γt, which is the key transcription factor of Th17 cells was measured by RT-PCR. RESULTS: There were no significant differences in the frequency of circulating Th17 cells, serum level of IL-17, and expression of RORγt in PBMCs between CHF patients and healthy controls. IL-17 protein level in the supernatants of PHA-stimulated PBMCs was also comparable between CHF patients and health donors. CONCLUSIONS: Circulating Th17 cells are not elevated in patients with CHF.


Subject(s)
Heart Failure/immunology , Interleukin-17/blood , Th17 Cells , Adult , Aged , Case-Control Studies , Female , Heart Failure/blood , Humans , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Male , Middle Aged , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phytohemagglutinins
8.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 32(4): 543-6, 2012 Apr.
Article in Zh | MEDLINE | ID: mdl-22803440

ABSTRACT

Lab diagnostics plays an important role in Chinese medicine (CM) microscopic syndrome differentiation owe to its properties such as microcosmic, objectivity, and quantitation. It is not replaceable in identifying dormant syndrome. Besides, it plays important roles in studying the essence of CM syndromes, the modeling of CM syndromes, the microscopic classification of CM syndromes, and the typing of CM syndromes. Therefore, lab diagnostic indices are important indices for microscopic syndrome differentiation. Microscopic syndrome differentiation deduced from laboratory diagnostics has become beneficial complement for macroscopic syndrome differentiation. It will promote the formation of a brand new syndrome differentiation subject and the development of microscopic syndrome differentiation.


Subject(s)
Laboratories , Medicine, Chinese Traditional/methods
9.
Cancer Lett ; 536: 215641, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35339615

ABSTRACT

As a partner of tetraspanins, EWI2 suppresses glioblastoma, melanoma, and prostate cancer; but its role in lung cancer has not been investigated. Bioinformatics analysis reveals that EWI2 gene expression is up regulated in lung adenocarcinoma and higher expression of EWI2 mRNA may predict poorer overall survival. However, experimental analysis shows that EWI2 protein is actually downregulated constantly in the tissues of lung adenocarcinoma and lung squamous cell carcinoma. Forced expression of EWI2 in human lung adenocarcinoma cells reduces total cellular and cell surface levels of various integrins and growth factor receptors, which initiates the outside-in motogenic and mitogenic signaling. These reductions result in the decreases in 1) cell-matrix adhesion, cell movement, and cell transformation in vitro and 2) tumor growth, burden, and metastasis in vivo, and result from the increases in lysosomal trafficking and proteolytic degradation of theses membrane receptors. EWI2 elevates lysosome formation by promoting nuclear retention of TFEB, the master transcription factor driving lysosomogenesis. In conclusion, EWI2 as a lung cancer suppressor attenuates lung cancer cells in a comprehensive fashion by inhibiting both tumor growth and tumor metastasis; EWI2 as an endolysosome regulator promotes lysosome activity to enhance lysosomal degradation of growth factor receptors and integrins and then reduce their levels and functions; and EWI2 can become a promising therapeutic candidate given its accessibility at the cell surface, dual inhibition on growth factor receptors and integrins, and broad-spectrum anti-cancer activity. More importantly, our observations also provide a novel therapeutic strategy to bypass the resistance to EGFR inhibitors.


Subject(s)
Adenocarcinoma of Lung , Antigens, CD/metabolism , Lung Neoplasms , Membrane Proteins/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Humans , Integrins/genetics , Integrins/metabolism , Lung Neoplasms/metabolism , Lysosomes/metabolism , Male , Receptors, Growth Factor/metabolism
10.
J Lipid Res ; 52(5): 1023-32, 2011 May.
Article in English | MEDLINE | ID: mdl-21368320

ABSTRACT

In this study, we investigated the hypothesis that regulatory T cells (T(reg)) are involved in the immunomodulatory effects of statins on rheumatoid arthritis (RA) patients. The 12-week study cohort consisted of 55 RA patients and 42 control subjects allocated to either a group treated with atorvastatin (AT) (20 mg/day) or a non-AT group. T(reg) numbers, suppressive function, serum inflammatory markers, and disease activity were evaluated before and after the therapy. Furthermore, the effects of AT on the frequency and suppressive function of T(reg) were determined in vitro. Our data revealed that the suppressive function of T(reg) from RA patients significantly decreased compared with that of control subjects. AT significantly reduced erythrosedimentation, C-reactive protein, and disease activity. Concomitantly, T(reg) numbers and suppressive functions were significantly improved by AT. Consistent with the in vivo experiments, AT promoted the generation of T(reg) from primary T cells and enhanced preexisting T(reg) function in vitro. Moreover, we showed that PI3K-Akt-mTOR and ERK signal pathways were involved in the induction of T(reg) by AT. In conclusion, AT significantly increased T(reg) numbers and restored their suppressive function in the RA patients, and this may be relevant in the modulation of uncontrolled inflammation in this disorder.


Subject(s)
Anticholesteremic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Heptanoic Acids/therapeutic use , Pyrroles/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Adult , Atorvastatin , Female , Humans , Male , Middle Aged , Signal Transduction/drug effects
11.
Front Cardiovasc Med ; 8: 630471, 2021.
Article in English | MEDLINE | ID: mdl-33860000

ABSTRACT

Background: Tetraspanins and integrins are integral membrane proteins. Tetraspanins interact with integrins to modulate the dynamics of adhesion, migration, proliferation, and signaling in the form of membrane domains called tetraspanin-enriched microdomains (TEMs). TEMs also contain other cell adhesion proteins like immunoglobulin superfamily (IgSF) proteins and claudins. Cardiovascular functions of these TEM proteins have emerged and remain to be further revealed. Objectives: The aims of this study are to explore the roles of these TEM proteins in the cardiovascular system using bioinformatics tools and databases and to highlight the TEM proteins that may functionally associate with cardiovascular physiology and pathology. Methods: For human samples, three databases-GTEx, NCBI-dbGaP, and NCBI-GEO-were used for the analyses. The dbGaP database was used for GWAS analysis to determine the association between target genes and human phenotypes. GEO is an NCBI public repository that archives genomics data. GTEx was used for the analyses of tissue-specific mRNA expression levels and eQTL. For murine samples, GeneNetwork was used to find gene-phenotype correlations and gene-gene correlations of expression levels in mice. The analysis of cardiovascular data was the focus of this study. Results: Some integrins and tetraspanins, such as ITGA8 and Cd151, are highly expressed in the human cardiovascular system. TEM components are associated with multiple cardiovascular pathophysiological events in humans. GWAS and GEO analyses showed that human Cd82 and ITGA9 are associated with blood pressure. Data from mice also suggest that various cardiovascular phenotypes are correlated with integrins and tetraspanins. For instance, Cd82 and ITGA9, again, have correlations with blood pressure in mice. Conclusion: ITGA9 is related to blood pressure in both species. KEGG analysis also linked ITGA9 to metabolism and MAPK signaling pathway. This work provides an example of using integrated bioinformatics approaches across different species to identify the connections of structurally and/or functionally related molecules to certain categories of diseases.

12.
Cell Physiol Biochem ; 25(4-5): 451-8, 2010.
Article in English | MEDLINE | ID: mdl-20332626

ABSTRACT

AIMS: Increasing evidences confirm the role of immune activation in the pathogenesis of chronic heart failure (CHF). Regulatory T cells appear central to the control of immune homeostasis. We assessed the hypothesis that the circulating frequency and function of CD4+CD25+ Foxp3+CD127(low) T regulatory cells (Tregs) would be deranged in patients with CHF. METHODS: Ninety-nine CHF patients due to non-ischemic (NIHF) or ischemic etiology (IHF) and 24 control donors were enrolled in the study. Frequency of circulating Tregs was evaluated by flow cytometry. Foxp3 in peripheral blood mononuclear cells (PBMCs) was assayed at the mRNA level by real-time PCR. Functional properties of Tregs to suppress proliferation and pro-inflammatory cytokines secretion of activated CD4+CD25(-) T cells were measured by proliferation assay and ELISA. RESULTS: The results demonstrated that CHF patients had significantly lower frequency of circulating Tregs and reduced Foxp3 expression in PBMCs compared with control donors. Moreover, Tregs from CHF patients showed compromised function to suppress CD4+CD25(-) T cells proliferation and pro-inflammatory cytokines secretion. A similar pattern with reduced Tregs frequency and compromised function was found in both NIHF and IHF patients. Correlation analysis suggested that Tregs frequency and function positively correlated with LVEF, whereas negatively correlated with LVEDD and NT-proBNP in patients with CHF. CONCLUSIONS: Our data are the first to demonstrate that frequencies of circulating Tregs in patients with CHF are reduced and their suppressive function compromised independently of the etiology. Defective Tregs may be an underlying mechanism of immune activation in CHF patients.


Subject(s)
Forkhead Transcription Factors/metabolism , Heart Failure/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , T-Lymphocytes, Regulatory/immunology , Adult , Chronic Disease , Female , Flow Cytometry , Humans , Male , Middle Aged
13.
J Card Fail ; 15(2): 158-62, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19254676

ABSTRACT

BACKGROUND: The T-helper (Th)1/Th2 imbalance has been demonstrated to be involved in chronic heart failure (CHF). We sought to determine whether atorvastatin exhibited any effect on CHF through modulating the Th1/Th2 response. METHODS AND RESULTS: We measured serum concentrations of interleukin (IL)-12, -18, interferon (IFN)-gamma, IL-4, and IL-10 from 20 controls and 72 patients with nonischemic CHF by enzyme-linked immunosorbent assay. To investigate the effect of atorvastatin in vivo, CHF patients were either classified into a usual therapy group (n = 35) or usual therapy plus atorvastatin (10 mg/day) group (n = 37). Patient serum levels of IFN-gamma and IL-4 were measured at time of admission and 2 weeks after treatment. Peripheral blood mononuclear cells from patients of CHF group were cultured in the presence or absence of atorvastatin (0, 0.4, 1, and 4 micromol/L) in vitro, and IFN-gamma and IL-4 levels were detected. Serum levels of IL-12, IL-18, and IFN-gamma were significantly higher in the CHF group than in the control group. The levels of IFN-gamma and the ratios of IFN-gamma:IL-4 were significantly decreased with atorvastatin treatment both in vivo and in vitro, whereas levels of IL-4 did not differ significantly. CONCLUSIONS: Th1 polarization exists in patients with CHF, and atorvastatin can modulate the Th1/Th2 response through inhibiting Th1 cytokine production.


Subject(s)
Heart Failure/drug therapy , Heptanoic Acids/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pyrroles/therapeutic use , Th1 Cells/drug effects , Th2 Cells/drug effects , Atorvastatin , Biomarkers/blood , Case-Control Studies , Female , Heart Failure/blood , Humans , Hypertension/drug therapy , Immunoenzyme Techniques , Inflammation/blood , Interferon-gamma/blood , Interleukin-10/blood , Interleukin-12/blood , Interleukin-18/blood , Interleukin-4/blood , Male , Middle Aged
14.
Cardiovasc Drugs Ther ; 23(2): 121-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18949543

ABSTRACT

INTRODUCTION: We investigated the possible protective effect of poly (ADP-ribose) polymerase (PARP) inhibition in preventing endothelial dysfunction induced by hyperhomocysteinemia (Hhcy). METHODS: Sprague-Dawley rats were divided into Hhcy group, Hhcy + 3-aminobenzamide(3-AB) group, control group and control + 3-AB group. A high-methionine diet was given to induce hyperhomocysteinemia. In Hhcy + 3-AB and control + 3-AB groups, rats were injected intraperitoneally with 3-AB (inhibitor of PARP). After 45 days, ultrastructural changes of aortas were observed by transmission electron microscope. Vascular reactivity of thoracic aortic rings was measured in organ chambers. PARP activity was detected. The levels of plasma total homocysteine, nitrite/nitrate, endothelin (ET)-1 and malondialdehyde were assayed. RESULTS: Rats in Hhcy group developed severe hyperhomocysteinemia and significant loss of endothelial function as measured by both vascular rings and levels of nitrite/nitrate and ET-1. Malondialdehyde levels increased significantly in Hhcy rats compared with control rats. 3-AB improved Ach-induced, NO-mediated vascular relaxation and stabilized the level of nitrite/nitrate and ET-1. Obvious improvement of ultrastructure can be observed in Hhcy + 3-AB group. CONCLUSIONS: These results suggest that pharmacological inhibition of PARP prevents the development of endothelial dysfunction in rats with hyperhomocysteinemia which may represent a novel approach to improve vascular dysfunction associated with hyperhomocysteinemia.


Subject(s)
Benzamides/pharmacology , Enzyme Inhibitors/pharmacology , Hyperhomocysteinemia/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/pathology , Disease Models, Animal , Endothelin-1/drug effects , Endothelin-1/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Hyperhomocysteinemia/physiopathology , Male , Malondialdehyde/metabolism , Microscopy, Electron, Transmission , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
15.
J Mol Cell Cardiol ; 45(2): 168-75, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18502445

ABSTRACT

Atherosclerosis is a chronic inflammatory disease, which is positively and negatively regulated by T helper (Th) 1 and Th2 lymphocytes, respectively. Recent findings indicate that suppressive oligodeoxynucleotides (ODNs) expressing TTAGGG motifs selectively reduce Th1 cytokine production and have been proven effective at blocking the development of organ-specific autoimmune diseases. In the current research, we hypothesized that suppressive ODNs may alter the development of atherosclerosis. Eight-week-old homozygous ApoE(-/-) male mice were injected with 300 mug ODNs A151 (TTAGGG) or nonspecific ODNs 1612. Atherosclerotic lesion sizes were dramatically reduced by ODNs A151, but not by nonspecific ODNs. MCP-1 and VCAM-1, which are the key inflammatory factors in atherogenesis, were significantly attenuated by the suppressive ODNs A151. In the splenic lymphocytes, FACS analysis showed ODNs A151 reduced the percentage of IFN-gamma-producing Th1 cells and slightly increased the percentage of IL-4-producing Th2 cells, indicating that suppressive ODNs skewed the Th1/Th2 balance toward Th2 inflammation in vivo. Furthermore, ODNs A151 down-regulated the phosphorylation of STAT1 and STAT4 and suppressed up-regulation of T-bet, a signal modulator for Th1, and didn't impact GATA-3 and STAT6, which are associated with a Th2 phenotype. Consistent with this in vivo observation, ELISA analysis demonstrated that ODNs A151 suppressed Th1 cytokines IFN-gamma and TNF-alpha, and augmented Th2 cytokines IL-4 and IL-10 in vitro. This study provides the first experimental evidence that suppressive ODNs inhibit the development of atherosclerosis through inhibition of the STAT1/4 and T-bet pathways, which further modulate the Th1/Th2 balance in vivo.


Subject(s)
Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/therapy , Immunosuppressive Agents/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/prevention & control , Cells, Cultured , CpG Islands/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/immunology , Th1 Cells/drug effects , Th2 Cells/drug effects
16.
J Huazhong Univ Sci Technolog Med Sci ; 28(4): 391-5, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18704298

ABSTRACT

The purpose of the study was to observe the effect of rapamycin (RAPA) on the differentiation and maturation of rat bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs from Wistar rats were cultured with granulocyte-macrophage colony-stimulating factor plus interleukin-4 in the presence or absence of RAPA (20 ng/mL), and stimulated with lipopolysaccharide (LPS) for 24 h before cells and supernatants were collected. Surface phenotype of BMDCs was flow-cytometrically detected to determine the expression of maturation markers, MHC class II and CD86. Supernatants were analyzed for the production of IL-12 and IFN-gamma cytokines by using ELISA. BMDCs were co-cultured with T cells from Lewis rats and mixed lymphocyte reaction was assessed by MTT method. The morphology of BMDCs stimulated with LPS remained immature after RAPA pretreatment. RAPA significantly decreased the CD86 expression, impaired the IL-12 and IFN-gamma production of BMDCs stimulated with LPS, and inhibited the proliferation of allogeneic T cells. In conclusion, RAPA can inhibit the maturation of BMDCs stimulated with LPS in terms of the morphology, surface phenotype, cytokine production, and ability of BMDCs to stimulate the proliferation of allogeneic T cells in vitro.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation/drug effects , Dendritic Cells/cytology , Sirolimus/pharmacology , Animals , Cell Differentiation/physiology , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-4/pharmacology , Lipopolysaccharides/pharmacology , Male , Rats , Rats, Wistar
17.
Oncol Rep ; 40(1): 479-487, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29767248

ABSTRACT

Dual blockade of phosphoinositide 3-kinase (PI3K) and poly(ADP-ribose) polymerase (PARP) has been revealed to be an effective treatment strategy for breast, ovarian and prostate cancer. However, the efficacy of this combination for the treatment of gastric cancer, and potential predictive therapeutic biomarkers remain unclear. Recent evidence suggests that the deficiency of AT-rich interactive domain containing protein 1A (ARID1A), which is a crucial chromatin remodeling gene, sensitizes tumor cells to PI3K and PARP inhibitors. Herein, we evaluated the therapeutic role of the combined treatment of PI3K inhibitor BKM120 and PARP inhibitor olaparib on gastric cancer cells, and explored ARID1A as a predictive biomarker. The results demonstrated that combined treatment with PI3K and PARP inhibitors effectively inhibited proliferation detected by MTS and clonogenic assay, invasion and migration by Transwell assay, of gastric cancer cells with ARID1A deficiency. Mechanistically, dual blockade of PI3K and PARP in ARID1A-depleted gastric cancer cells significantly increased apoptosis detected by flow cytometry, and induced DNA damage by immunofluorescent staining. Taken together, these data suggest that the combined treatment with PI3K inhibitor BKM120 and PARP inhibitor olaparib may be a promising therapeutic regimen for the treatment of gastric cancer, and ARID1A deficiency could serve as a potential predictive therapeutic biomarker.


Subject(s)
Biomarkers, Tumor/genetics , Phosphoinositide-3 Kinase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Aminopyridines/pharmacology , Cell Line, Tumor , Chromatin Assembly and Disassembly/drug effects , DNA Damage/drug effects , DNA-Binding Proteins , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Morpholines/pharmacology , Nuclear Proteins/deficiency , Phosphatidylinositol 3-Kinases/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Transcription Factors/deficiency
18.
J Cancer ; 9(5): 890-900, 2018.
Article in English | MEDLINE | ID: mdl-29581767

ABSTRACT

Pancreatic cancer is among the most aggressive human cancers, and is resistant to regular chemotherapy and radiotherapy. The AT-rich interactive domain containing protein 1A (ARID1A) gene, a crucial chromatin remodeling gene, mutates frequently in a broad spectrum of cancers, including pancreatic cancer. Recent evidence suggests that ARID1A acts as tumor suppressor and plays an important role in DNA damage repair (DDR). However, the effect of ARID1A on the radiosensitivity of pancreatic cancer remains unclear. Herein, we investigated the involvement of ARID1A depletion in the radioresistance of pancreatic cancer cells, and explored the underlying mechanisms. The results reveal that knockdown of ARID1A enhances the radioresistance of pancreatic cancer cells through suppressing apoptosis, impairing G2-M checkpoint arrest, strengthening DDR, and accompanying activation of PI3K/AKT signaling pathway. Moreover, upon inhibition of PI3K/AKT pathway by PI3K-inhibitor LY294002 or AKT-inhibitor mk2206, the radiosensitivity of ARID1A-deficient pancreatic cancer cells is improved in vitro via increased apoptosis and weakened DDR. Taken together, these data suggest that loss of ARID1A expression enhances radioresistance of pancreatic cancer through activation of PI3K/AKT pathway, which maybe a promising target for radiosensitization of ARID1A-deficient pancreatic cancer.

19.
Huan Jing Ke Xue ; 34(3): 1044-54, 2013 Mar.
Article in Zh | MEDLINE | ID: mdl-23745413

ABSTRACT

Coastal zone could be considered as an important sink of regional source to sink and preserve historical records of environmental evolution. Four sediment cores, collected from tidal flat at Haizhou Bay near Lianyungang City, were examined for concentrations of heavy metals including Cd, Cr, Cu, Mn, Pb and Zn in core sediments to investigate the historical input of trace metals. In addition, sediment rates of cores LH3 and LH4 were determined based on radionuclide 210Pb. The results showed that grain size control effect was not the main factor that influenced the distribution of heavy metals. Heavy metals concentrations in the surface sediments were higher than these regional background values. Furthermore, Al element as a proxy of grain size was selected for normalization and calculation of metal enrichment factor (EF) and anthropogenic heavy metal fluxes. The results revealed that heavy metals in tidal flats were continuously enriched in the past decades, meanwhile, tidal flats have been significantly subjected to contaminations due to anthropogenic activities. Moreover, the depth profiles of heavy metals fluxes correspond to scenario of social-economy development of Lianyungang, which is an important urban area near Haizhou Bay. From 1950s to 2005, anthropogenic fluxes of metals increased with fluctuations, whereas, since 2005 anthropogenic fluxes declined, which may be correlated to the adjustment of industrial structure as well as the strengthened environmental regulation.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollution/history , Bays , China , History, 20th Century , History, 21st Century , Seawater/analysis , Tidal Waves
20.
Mar Pollut Bull ; 74(1): 403-12, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23820195

ABSTRACT

The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.


Subject(s)
Bays/chemistry , Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL