Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Publication year range
1.
Adv Exp Med Biol ; 1441: 1033-1055, 2024.
Article in English | MEDLINE | ID: mdl-38884768

ABSTRACT

Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.


Subject(s)
Arrhythmias, Cardiac , Genetic Predisposition to Disease , Mutation , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Genetic Predisposition to Disease/genetics , Ion Channels/genetics , Phenotype , Electrocardiography
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894977

ABSTRACT

Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , Sick Sinus Syndrome/genetics , Mutation , Arrhythmias, Cardiac/metabolism , Acetylcholine/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430690

ABSTRACT

Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node dysfunction and deafness. In addition, germline mutations in CACNA1D have been linked to neurodevelopmental syndromes including epileptic seizures, autism, intellectual disability and primary hyperaldosteronism. Here, a three-generation family with a syndromal phenotype of sinus node dysfunction, idiopathic epilepsy and attention deficit hyperactivity disorder (ADHD) is investigated. Whole genome sequencing and functional heterologous expression studies were used to identify the disease-causing mechanisms in this novel syndromal disorder. We identified a heterozygous non-synonymous variant (p.Arg930His) in the CACNA1D gene that cosegregated with the combined clinical phenotype in an autosomal dominant manner. Functional heterologous expression studies showed that the CACNA1D variant induces isoform-specific alterations of Cav1.3 channel gating: a gain of ion channel function was observed in the brain-specific short CACNA1D isoform (Cav1.3S), whereas a loss of ion channel function was seen in the long (Cav1.3L) isoform. The combined gain-of-function (GOF) and loss-of-function (LOF) induced by the R930H variant are likely to be associated with the rare combined clinical and syndromal phenotypes in the family. The GOF in the Cav1.3S variant with high neuronal expression is likely to result in epilepsy, whereas the LOF in the long Cav1.3L variant results in sinus node dysfunction.


Subject(s)
Calcium Channels, L-Type , Epilepsy , Sick Sinus Syndrome , Humans , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Protein Isoforms/metabolism , Sick Sinus Syndrome/genetics , Sick Sinus Syndrome/metabolism , Exome Sequencing
4.
Circulation ; 141(6): 429-439, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31941373

ABSTRACT

BACKGROUND: Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare KCNE1 variants implicated in LQT5 was sought through an international multicenter collaboration. METHODS: Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries. KCNE1 variants were evaluated for ECG penetrance (defined as QTc >460 ms on presenting ECG) and genotype-phenotype segregation. Multivariable Cox regression was used to compare the associations between clinical and genetic variables with a composite primary outcome of definite arrhythmic events, including appropriate implantable cardioverter-defibrillator shocks, aborted cardiac arrest, and sudden cardiac death. RESULTS: A total of 32 distinct KCNE1 rare variants were identified in 89 probands and 140 genotype positive family members with presumed LQT5 and an additional 19 Type 2 Jervell and Lange-Nielsen syndrome patients. Among presumed LQT5 patients, the mean QTc on presenting ECG was significantly longer in probands (476.9±38.6 ms) compared with genotype positive family members (441.8±30.9 ms, P<0.001). ECG penetrance for heterozygous genotype positive family members was 20.7% (29/140). A definite arrhythmic event was experienced in 16.9% (15/89) of heterozygous probands in comparison with 1.4% (2/140) of family members (adjusted hazard ratio [HR] 11.6 [95% CI, 2.6-52.2]; P=0.001). Event incidence did not differ significantly for Type 2 Jervell and Lange-Nielsen syndrome patients relative to the overall heterozygous cohort (10.5% [2/19]; HR 1.7 [95% CI, 0.3-10.8], P=0.590). The cumulative prevalence of the 32 KCNE1 variants in the Genome Aggregation Database, which is a human database of exome and genome sequencing data from now over 140 000 individuals, was 238-fold greater than the anticipated prevalence of all LQT5 combined (0.238% vs 0.001%). CONCLUSIONS: The present study suggests that putative/confirmed loss-of-function KCNE1 variants predispose to QT prolongation, however, the low ECG penetrance observed suggests they do not manifest clinically in the majority of individuals, aligning with the mild phenotype observed for Type 2 Jervell and Lange-Nielsen syndrome patients.


Subject(s)
Long QT Syndrome , Penetrance , Potassium Channels, Voltage-Gated/genetics , Registries , Adolescent , Adult , Death, Sudden, Cardiac , Electric Countershock , Electrocardiography , Female , Heart Arrest/genetics , Heart Arrest/mortality , Heart Arrest/physiopathology , Heart Arrest/therapy , Humans , Long QT Syndrome/genetics , Long QT Syndrome/mortality , Long QT Syndrome/physiopathology , Long QT Syndrome/therapy , Male , Middle Aged
5.
Genet Med ; 23(1): 47-58, 2021 01.
Article in English | MEDLINE | ID: mdl-32893267

ABSTRACT

PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.


Subject(s)
Brugada Syndrome , Long QT Syndrome , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Brugada Syndrome/genetics , Genetic Testing , Humans , Long QT Syndrome/diagnosis , Long QT Syndrome/epidemiology , Long QT Syndrome/genetics , Mutation , Population Control
6.
BMC Cardiovasc Disord ; 21(1): 174, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33849460

ABSTRACT

BACKGROUND: Autopsies regularly aim to clarify the cause of death; however, relatives may directly benefit from autopsy results in the setting of heritable traits ("mortui vivos docent"). CASE PRESENTATION: A case of a sudden unexpected cardiac death of a 5.5-months-old child is presented. Autopsy and thorough postmortem cardiac examinations revealed a massively enlarged heart with endomyocardial fibroelastosis. Postmortem molecular testing (molecular autopsy) revealed an unusual combination of two biparental MYBPC3 gene mutations likely to underlie the cardiac abnormalities. Thus, the molecular autoptic findings also had consequences for the relatives of the deceased child and impact on further family planning. CONCLUSIONS: The presented case highlights the need for clinical autopsies including cardiac examinations and postmortem molecular testing; it also paves the way for further cascade screening of family members for cardiac disease, if a distinct genetic disorder is suspected.


Subject(s)
Carrier Proteins/genetics , Death, Sudden, Cardiac/etiology , Endocardial Fibroelastosis/genetics , Mutation , Autopsy , Cardiomegaly/genetics , Cardiomegaly/pathology , DNA Mutational Analysis , Death, Sudden, Cardiac/pathology , Endocardial Fibroelastosis/pathology , Fatal Outcome , Genetic Predisposition to Disease , Heredity , Heterozygote , Humans , Infant , Male , Myocardium/pathology , Pedigree , Phenotype
7.
Eur Heart J ; 41(30): 2878-2890, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32533187

ABSTRACT

AIMS: Brugada syndrome (BrS) is characterized by a unique electrocardiogram (ECG) pattern and life-threatening arrhythmias. However, the Type 1 Brugada ECG pattern is often transient, and a genetic cause is only identified in <25% of patients. We sought to identify an additional biomarker for this rare condition. As myocardial inflammation may be present in BrS, we evaluated whether myocardial autoantibodies can be detected in these patients. METHODS AND RESULTS: For antibody (Ab) discovery, normal human ventricular myocardial proteins were solubilized and separated by isoelectric focusing (IEF) and molecular weight on two-dimensional (2D) gels and used to discover Abs by plating with sera from patients with BrS and control subjects. Target proteins were identified by mass spectrometry (MS). Brugada syndrome subjects were defined based on a consensus clinical scoring system. We assessed discovery and validation cohorts by 2D gels, western blots, and ELISA. We performed immunohistochemistry on myocardium from BrS subjects (vs. control). All (3/3) 2D gels exposed to sera from BrS patients demonstrated specific Abs to four proteins, confirmed by MS to be α-cardiac actin, α-skeletal actin, keratin, and connexin-43, vs. 0/8 control subjects. All (18/18) BrS subjects from our validation cohorts demonstrated the same Abs, confirmed by western blots, vs. 0/24 additional controls. ELISA optical densities for all Abs were elevated in all BrS subjects compared to controls. In myocardium obtained from BrS subjects, each protein, as well as SCN5A, demonstrated abnormal protein expression in aggregates. CONCLUSION: A biomarker profile of autoantibodies against four cardiac proteins, namely α-cardiac actin, α-skeletal actin, keratin, and connexin-43, can be identified from sera of BrS patients and is highly sensitive and specific, irrespective of genetic cause for BrS. The four involved proteins, along with the SCN5A-encoded Nav1.5 alpha subunit are expressed abnormally in the myocardium of patients with BrS.


Subject(s)
Brugada Syndrome , Arrhythmias, Cardiac , Autoantibodies , Brugada Syndrome/diagnosis , Electrocardiography , Heart Ventricles , Humans
8.
J Mol Cell Cardiol ; 145: 74-83, 2020 08.
Article in English | MEDLINE | ID: mdl-32535041

ABSTRACT

Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188⁎), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188⁎ causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188⁎ knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188⁎ loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders.


Subject(s)
Cardiac Conduction System Disease/genetics , Cell Adhesion Molecules/genetics , Genetic Predisposition to Disease , Muscle Proteins/genetics , Action Potentials , Animals , Atrioventricular Block/genetics , Bradycardia/complications , Cell Adhesion Molecules/metabolism , Cell Line , Genetic Association Studies , Heart Conduction System/metabolism , Heart Conduction System/pathology , Heterozygote , Homozygote , Humans , Leukocytes/metabolism , Mice, Transgenic , Muscle Proteins/metabolism , Mutation/genetics , Potassium Channels, Tandem Pore Domain/metabolism , RNA/metabolism , Sinoatrial Node/metabolism , Stress, Physiological , Exome Sequencing , Xenopus laevis
9.
Biochem Biophys Res Commun ; 518(3): 500-505, 2019 10 20.
Article in English | MEDLINE | ID: mdl-31434612

ABSTRACT

We recently identified a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). Molecular dynamics studies revealed possible actin polymerization defects as G247D mutation resides at the juncture of side-chain interaction, which was indeed confirmed by in vitro actin polymerization assays. Since polymerization/de-polymerization is important for the activation of Rho-GTPase-mediated serum response factor (SRF)-signaling, we studied the effect of G247D mutation using luciferase assay. Overexpression of native human ACTC1 in neonatal rat cardiomyocytes (NRVCMs) strongly activated SRF-signaling both in C2C12 cells and NRVCMs, whereas, G247D mutation abolished this activation. Mechanistically, we found reduced GTP-bound Rho-GTPase and increased nuclear localization of globular actin in NRVCMs overexpressing mutant ACTC1 possibly causing inhibition of SRF-signaling activation. In conclusion, our data suggests that human G247D ACTC1 mutation negatively regulates SRF-signaling likely contributing to the late-onset DCM observed in mutation carrier patients.


Subject(s)
Actins/genetics , Myocytes, Cardiac/pathology , Point Mutation , Transcription Factors/metabolism , Actins/metabolism , Animals , Animals, Newborn , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cell Line , Cells, Cultured , Humans , Myocytes, Cardiac/metabolism , Rats , Signal Transduction
10.
J Mol Cell Cardiol ; 81: 71-80, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25655935

ABSTRACT

TASK-1 channels have emerged as promising drug targets against atrial fibrillation, the most common arrhythmia in the elderly. While TASK-3, the closest relative of TASK-1, was previously not described in cardiac tissue, we found a very prominent expression of TASK-3 in right human auricles. Immunocytochemistry experiments of human right auricular cardiomyocytes showed that TASK-3 is primarily localized at the plasma membrane. Single-channel recordings of right human auricles in the cell-attached mode, using divalent-cation-free solutions, revealed a TASK-1-like channel with a single-channel conductance of about 30pS. While homomeric TASK-3 channels were not found, we observed an intermediate single-channel conductance of about 55pS, possibly reflecting the heteromeric channel formed by TASK-1 and TASK-3. Subsequent experiments with TASK-1/TASK-3 tandem channels or with co-expressed TASK-1 and TASK-3 channels in HEK293 cells or Xenopus oocytes, supported that the 55pS channels observed in right auricles have electrophysiological characteristics of TASK-1/TASK-3 heteromers. In addition, co-expression experiments and single-channel recordings suggest that heteromeric TASK-1/TASK-3 channels have a predominant surface expression and a reduced affinity for TASK-1 blockers. In summary, the evidence for heteromeric TASK-1/TASK-3 channel complexes together with an altered pharmacologic response to TASK-1 blockers in vitro is likely to have further impact for studies isolating ITASK-1 from cardiomyocytes and for the development of drugs specifically targeting TASK-1 in atrial fibrillation treatment.


Subject(s)
Atrial Fibrillation/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Atrial Fibrillation/pathology , Atrial Fibrillation/surgery , Benzamides/pharmacology , Benzeneacetamides/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Female , Gene Expression Regulation , HEK293 Cells , Heart Atria/cytology , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Oocytes/cytology , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/genetics , Primary Cell Culture , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Sulfonamides/pharmacology , Xenopus laevis , ortho-Aminobenzoates/pharmacology
11.
Inflamm Res ; 63(4): 267-76, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24316867

ABSTRACT

OBJECTIVE: The coxsackie and adenovirus receptor (CAR) mediates the entry of coxsackievirus B (CVB) and adenovirus into host cells and is, therefore, a key determinant for the molecular pathogenesis of viral diseases such as myocarditis. The aim was to investigate the influence of HMG-CoA reductase inhibitor lovastatin on CAR expression in endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVECs) were exposed to different concentrations of lovastatin (0.05-5 µmol/l) for up to 48 h. Alterations in CAR expression were examined by quantitative real-time PCR (qRT-PCR) and flow cytometry. In addition, after treatment with 1 µmol/l lovastatin for 48 h, HUVECs were infected for 8 h with CVB3 and virus replication was detected by qRT-PCR using viral-specific TaqMan probes. RESULTS: We found that lovastatin decreases CAR mRNA expression by up to 80% (p < 0.01) and CAR protein expression by up to 19% (p < 0.01), in a concentration-dependent manner. Moreover, virus replication of CVB3 was significantly inhibited after lovastatin treatment (p < 0.05). The signaling mechanism of CAR down-regulation by lovastatin depends on the Rac1/Cdc42 pathway. CONCLUSION: This study shows for the first time that lovastatin reduces the expression of CAR and subsequently the replication of CVB3 in HUVECs.


Subject(s)
Coxsackie and Adenovirus Receptor-Like Membrane Protein/antagonists & inhibitors , Enterovirus B, Human/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/pharmacology , Cells, Cultured , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Enterovirus B, Human/physiology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/virology , Humans , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Virus Replication/drug effects , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
12.
Stem Cell Res ; 78: 103446, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776645

ABSTRACT

The heterozygous mutation c.155G > T in GNB2 clinically leads to sinus bradycardia and sinus node dysfunction. Here, patient-specific skin fibroblasts of the mutation carrier were used for Sendai virus reprogramming into human induced-pluripotent stem cells (hiPSC). For generating the isogenic control cell line, a CRISPR/Cas9-mediated HDR-repair of the hiPSCs was carried out. Both generated cell lines (GNB2 SV5528, GNB2 K26) maintained a normal karyotype, cell morphology, pluripotency in immunofluoresence and RT-qPCR analysis. Both hiPSC-lines showed differentiation potential into all three germ layers. Differentiated cardiomyocytes of this isogenic set may pave the way for investigating pharmacological rescue strategies for sinus node dysfunction.


Subject(s)
CRISPR-Cas Systems , Induced Pluripotent Stem Cells , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems/genetics , Heterozygote , Cell Line , Cell Differentiation , Sick Sinus Syndrome/genetics , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
13.
Front Cardiovasc Med ; 10: 1240189, 2023.
Article in English | MEDLINE | ID: mdl-38028454

ABSTRACT

Background: Hypertrophic cardiomyopathy (HCM) is a serious hereditary cardiomyopathy. It is characterized morphologically by an increased left ventricular wall thickness and mass and functionally by enhanced global chamber function and myocellular contractility, diastolic dysfunction, and myocardial fibrosis development. Typically, patients with HCM experience atrial fibrillation (AF), syncope, and ventricular fibrillation (VF), causing severe symptoms and cardiac arrest. In contrast, sinoatrial node (SAN) arrest in the setting of HCM is uncommon. In particular, during VF, it has not been described so far. Case summary: In this study, we report an 18-year-old woman patient with sudden cardiac arrest due to VF and successful cardiopulmonary resuscitation as the first clinical manifestation of non-obstructive HCM. Subsequently, a subcutaneous implantable cardioverter-defibrillator (ICD) was implanted for secondary VF prophylaxis. However, additional episodes of VF occurred. During these, device interrogation revealed a combined occurrence of VF, bradycardia, and SAN arrest, requiring a device exchange into a dual-chamber ICD. A heterozygous, pathogenic variant of the MYH7 gene (c.2155C>T; p.Arg719Trp) was identified as causative for HCM. Discussion: First published in 1994, the particular MYH7 variant (p.Arg719Trp) was described in HCM patients with a high incidence of premature cardiac death and a reduced life expectancy. Electrophysiological studies on HCM patients are mainly performed to treat AF and ventricular tachycardia. Further extraordinary arrhythmic phenotypes were reported only in a few HCM patients. Taken together, the present case with documented co-existing VF and SAN arrest is rare and also emphasizes addressing the presence of SAN arrest (in particular, during VF episodes) in HCM patients when a distinct ICD device is considered for implantation.

14.
Stem Cell Res ; 73: 103223, 2023 12.
Article in English | MEDLINE | ID: mdl-37890333

ABSTRACT

A published heterozygous gain-of-function variant in the KCNJ5 gene (p.Trp101Cys) encoding the G-protein-activated inward-rectifier potassium channel 4 subunit of the IK,ACh channel is associated with human sinus node dysfunction (SND). Differentiated hiPSC-cardiomyocytes may serve as an in-vitro model to study SND and to develop pharmacological rescue strategies. Therefore, a mutant hiPSCs line from patient-derived peripheral blood mononuclear cells (PBMCs) were reprogrammed with CytoTune-iPS 2.0 Sendai Reprogramming Kit. The hiPSC line (KCNJ5 K8) showed a regular karyotype, a typical hiPSC morphology, expressed pluripotency-associated markers in immunofluorescence stainings and RT-qPCR analysis. The ability for differentiation into all three germ layers was shown.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear , Cell Differentiation , Cell Line , Cellular Reprogramming , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
15.
Heart Rhythm ; 20(8): 1136-1143, 2023 08.
Article in English | MEDLINE | ID: mdl-36806574

ABSTRACT

BACKGROUND: A variant in the SLC4A3 anion exchanger has been identified as a novel cause of short QT syndrome (SQTS), but the clinical importance of SLC4A3 as a cause of SQTS or sudden cardiac death remains unknown. OBJECTIVE: The purpose of this study was to investigate the prevalence of potential disease-causing variants in SQTS patients using gene panels including SLC4A3. METHODS: In this multicenter study, genetic testing was performed in 34 index patients with SQTS. The pathogenicity of novel SLC4A3variants was validated in a zebrafish embryo heart model. RESULTS: Potentially disease-causing variants were identified in 9 (26%) patients and were mainly (15%) located in SLC4A3: 4 patients heterozygous for novel nonsynonymous SLC4A3 variants-p.Arg600Cys, p.Arg621Trp, p.Glu852Asp, and p.Arg952His-and 1 patient with the known p.Arg370His variant. In other SQTS genes, potentially disease-causing variants were less frequent (2× in KCNQ1, 1× in KCNJ2, and CACNA1C each). SLC4A3 variant carriers (n = 5) had a similar heart rate but shorter QT and J point to T wave peak intervals than did noncarriers (n = 29). Knockdown of slc4a3 in zebrafish resulted in shortened heart rate-corrected QT intervals (calculated using the Bazett formula) that could be rescued by overexpression of the native human SLC4A3-encoded protein (AE3), but neither by the mutated AE3 variants p.Arg600Cys, p.Arg621Trp, p.Glu852Asp nor by p.Arg952His, suggesting pathogenicity of these variants. Dysfunction in slc4a3/AE3 was associated with alkaline cytosol and shortened action potential of cardiomyocytes. CONCLUSION: In about a quarter of patients with SQTS, a potentially disease-causing variant can be identified. Nonsynonymous variants in SLC4A3 represent the most common cause of SQTS, underscoring the importance of including SLC4A3 in the genetic screening of patients with SQTS or sudden cardiac death.


Subject(s)
Electrocardiography , Zebrafish , Animals , Humans , Arrhythmias, Cardiac , Death, Sudden, Cardiac/prevention & control , Electrocardiography/methods
16.
J Pers Med ; 12(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887632

ABSTRACT

INTRODUCTION: The long-QT syndrome (LQTS) is the most common ion channelopathy, typically presenting with a prolonged QT interval and clinical symptoms such as syncope or sudden cardiac death. Patients may present with a concealed phenotype making the diagnosis challenging. Correctly diagnosing at-risk patients is pivotal to starting early preventive treatment. OBJECTIVE: Identification of congenital and often concealed LQTS by utilizing novel deep learning network architectures, which are specifically designed for multichannel time series and therefore particularly suitable for ECG data. DESIGN AND RESULTS: A retrospective artificial intelligence (AI)-based analysis was performed using a 12-lead ECG of genetically confirmed LQTS (n = 124), including 41 patients with a concealed LQTS (33%), and validated against a control cohort (n = 161 of patients) without known LQTS or without QT-prolonging drug treatment but any other cardiovascular disease. The performance of a fully convolutional network (FCN) used in prior studies was compared with a different, novel convolutional neural network model (XceptionTime). We found that the XceptionTime model was able to achieve a higher balanced accuracy score (91.8%) than the associated FCN metric (83.6%), indicating improved prediction possibilities of novel AI architectures. The predictive accuracy prevailed independently of age and QTc parameters. CONCLUSIONS: In this study, the XceptionTime model outperformed the FCN model for LQTS patients with even better results than in prior studies. Even when a patient cohort with cardiovascular comorbidities is used. AI-based ECG analysis is a promising step for correct LQTS patient identification, especially if common diagnostic measures might be misleading.

17.
Nat Genet ; 54(3): 232-239, 2022 03.
Article in English | MEDLINE | ID: mdl-35210625

ABSTRACT

Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.


Subject(s)
Brugada Syndrome , Alleles , Brugada Syndrome/complications , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Disease Susceptibility/complications , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Microtubule-Associated Proteins/genetics , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Young Adult
18.
Cell Physiol Biochem ; 28(4): 579-92, 2011.
Article in English | MEDLINE | ID: mdl-22178870

ABSTRACT

BACKGROUND/AIMS: Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recapitulate the disease phenotype in vitro. METHODS: iPS cells were derived from dermal fibroblasts of healthy donors and a patient with CPVT1 carrying the novel heterozygous autosomal dominant mutation p.F2483I in the RYR2. Functional properties of iPS cell derived-cardiomyocytes were analyzed by using whole-cell current and voltage clamp and calcium imaging techniques. RESULTS: Patch-clamp recordings revealed arrhythmias and delayed afterdepolarizations (DADs) after catecholaminergic stimulation of CPVT1-iPS cell-derived cardiomyocytes. Calcium imaging studies showed that, compared to healthy cardiomyocytes, CPVT1-cardiomyocytes exhibit higher amplitudes and longer durations of spontaneous Ca(2+) release events at basal state. In addition, in CPVT1-cardiomyocytes the Ca(2+)-induced Ca(2+)-release events continued after repolarization and were abolished by increasing the cytosolic cAMP levels with forskolin. CONCLUSION: This study demonstrates the suitability of iPS cells in modeling RYR2-related cardiac disorders in vitro and opens new opportunities for investigating the disease mechanism in vitro, developing new drugs, predicting their toxicity, and optimizing current treatment strategies.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Models, Biological , Ryanodine Receptor Calcium Release Channel/metabolism , Action Potentials , Calcium/metabolism , Catecholamines/metabolism , Cell Differentiation , Colforsin/metabolism , Cyclic AMP/metabolism , Electrocardiography , Heterozygote , Humans , Induced Pluripotent Stem Cells/cytology , Karyotyping , Mutation , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Phenotype , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/pathology
19.
Int J Cardiol ; 329: 167-174, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33373648

ABSTRACT

BACKGROUND: Desmin is the major intermediate filament (IF) protein in human heart and skeletal muscle. So-called 'desminopathies' are disorders due to pathogenic variants in the DES gene and are associated with skeletal myopathies and/or various types of cardiomyopathies. So far, only a limited number of DES pathogenic variants have been identified and functionally characterized. METHODS AND RESULTS: Using a Sanger- and next generation sequencing (NGS) approach in patients with various types of cardiomyopathies, we identified two novel, non-synonymous missense DES variants: p.(Ile402Thr) and p.(Glu410Lys). Mutation carriers developed dilated (DCM) or arrhythmogenic cardiomyopathy (ACM), and cardiac conduction disease, leading to spare out the exercise-induced polymorphic ventricular tachycardia; we moved this variant to data in brief. To investigate the functional impact of these four DES variants, transfection experiments using SW-13 and H9c2 cells with native and mutant desmin were performed and filament assembly was analyzed by confocal microscopy. The DES_p.(Ile402Thr) and DES_p.(Glu410Lys) cells showed filament assembly defects forming cytoplasmic desmin aggregates. Furthermore, immunohistochemical and ultrastructural analysis of myocardial tissue from mutation carriers with the DES_p.(Glu410Lys) pathogenic variant supported the in vitro results. CONCLUSIONS: Our in vitro results supported the classification of DES_p.(Ile402Thr) and DES_p.(Glu410Lys) as novel pathogenic variants and demonstrated that the cardiac phenotypes associated with DES variants are diverse and cell culture experiments improve in silico analysis and genetic counseling because the pathogenicity of a variant can be clarified.


Subject(s)
Atrioventricular Block , Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Death, Sudden, Cardiac , Desmin/genetics , Humans , Mutation , Pedigree
20.
J Gen Virol ; 91(Pt 8): 1959-1970, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20392896

ABSTRACT

In viral myocarditis, adeno- and enteroviruses have most commonly been implicated as causes of infection. Both viruses require the human coxsackie-adenovirus receptor (CAR) to infect the myocardium. Due to its crucial role for viral entry, CAR-downregulation may lead to novel approaches for treatment for viral myocarditis. In this study, we report on pharmaceutical drug influences on CAR levels in human umbilical vein endothelial cells (HUVEC) and cervical carcinoma cells (HeLa) detected by immunoblotting, quantitative real time-PCR and cellular susceptibility to the cardiotropic coxsackie-B3 virus strain Nancy (CVB3). Our results indicate, for the first time, a dose-dependent CAR mRNA and protein downregulation upon Valsartan and Bosentan treatment. Most interestingly, drug-induced CAR diminution significantly reduced the viral load in CVB3-infected HUVEC. In order to assess the regulatory effects of both drugs in detail, we knocked down their protein targets, the G-protein coupled receptors angiotensin-II type-1 receptor (AT(1)R) and endothelin-1 type-A and -B receptors (ET(A)R/ET(B)R) in HUVEC. Receptor-specific gene silencing indicates that CAR gene expression is regulated by agonistic and antagonistic binding to ET(B)R, but not ET(A)R. In addition, neither stimulation nor inhibition of AT(1)R seemed to be involved in CAR gene regulatory processes. Our study indicates that Valsartan and Bosentan protected human endothelial cells from CVB3-infection. Therefore, besides their well-known anti-hypertensive effects these drugs may also protect the myocardium and other tissues from coxsackie- and adenoviral infection.


Subject(s)
Antiviral Agents/pharmacology , Endothelial Cells/virology , Enterovirus B, Human/drug effects , Receptors, Virus/biosynthesis , Sulfonamides/pharmacology , Tetrazoles/pharmacology , Valine/analogs & derivatives , Virus Replication/drug effects , Bosentan , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Down-Regulation , Enterovirus B, Human/physiology , Epithelial Cells/virology , Gene Expression , HeLa Cells , Humans , RNA, Messenger/biosynthesis , Receptors, Virus/antagonists & inhibitors , Valine/pharmacology , Valsartan , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL