Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Genet ; 8(2): e1002499, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22319459

ABSTRACT

Non-coding transcription can trigger histone post-translational modifications forming specialized chromatin. In fission yeast, heterochromatin formation requires RNAi and the histone H3K9 methyltransferase complex CLRC, composed of Clr4, Raf1, Raf2, Cul4, and Rik1. CLRC mediates H3K9 methylation and siRNA production; it also displays E3-ubiquitin ligase activity in vitro. DCAFs act as substrate receptors for E3 ligases and may couple ubiquitination with histone methylation. Here, structural alignment and mutation of signature WDxR motifs in Raf1 indicate that it is a DCAF for CLRC. We demonstrate that Raf1 promotes H3K9 methylation and siRNA amplification via two distinct, separable functions. The association of the DCAF Raf1 with Cul4-Rik1 is critical for H3K9 methylation, but dispensable for processing of centromeric transcripts into siRNAs. Thus the association of a DCAF, Raf1, with its adaptor, Rik1, is required for histone methylation and to allow RNAi to signal to chromatin.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Histones/genetics , Proto-Oncogene Proteins c-raf/genetics , RNA, Small Interfering/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Cdc20 Proteins , Cell Cycle Proteins/genetics , Chromatin Assembly and Disassembly , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Methylation , Methyltransferases/genetics , Multiprotein Complexes/genetics , Mutation , Protein Processing, Post-Translational , Schizosaccharomyces/metabolism , Structural Homology, Protein , Ubiquitin-Protein Ligases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL