Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791366

ABSTRACT

The rise in the antibiotic resistance of bacteria has increased scientific interest in the study of materials with unique mechanisms of antimicrobial action. This paper presents the results of studies on the antimicrobial activity of carbon materials and textiles decorated with them. A comparative analysis of the bactericidal and fungicidal activities of graphene oxide, electrochemically exfoliated multigraphene, carbon dots, and their combinations was performed. Microbiological studies on reference strains of E. coli, S. aureus, and C. albicans showed that graphene oxide inhibited growth with up to 98% efficiency. Electrochemically exfoliated multigraphene was less effective (up to 40%). This study found no significant antimicrobial activity of carbon dots and the combination of carbon dots with graphene oxide significantly weakened their effectiveness. However, the combination of electrochemically exfoliated multigraphene and carbon dots exhibits a synergistic effect (up to 76%). A study on the antimicrobial activity of decorated cotton textiles demonstrated the effectiveness of antimicrobial textiles with graphene oxide, electrochemically exfoliated multigraphene, and a combination of carbon dots with electrochemically exfoliated multigraphene.


Subject(s)
Anti-Infective Agents , Cotton Fiber , Graphite , Graphite/chemistry , Graphite/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Carbon/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Textiles , Quantum Dots/chemistry
2.
J Cell Physiol ; 231(1): 62-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26218298

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is a neuromuscular disease with a prevalence that could reach 1 in 8,000 characterized by progressive asymmetric muscle weakness. Myoblasts isolated from FSHD muscles exhibit morphological differentiation defects and show a distinct transcription profile. These abnormalities may be linked to the muscle weakness in FSHD patients. We have tested whether fusion of FSHD myoblasts with primary myoblasts isolated from healthy individuals could correct the differentiation defects. Our results show that the number of hybrid myotubes with normal phenotype increased with the percentage of normal myoblasts initially cultured. We demonstrated that a minimum of 50% of normal nuclei is required for a phenotypic correction of the FSHD phenotype. Moreover, transcriptomic profiles of phenotypically corrected hybrid myotubes showed that the expression of deregulated genes in FSHD myotubes became almost normal. The number of deregulated pathways also decreased from 39 in FSHD myotubes to one in hybrid myotubes formed with 40% FSHD and 60% normal myoblasts. We thus propose that while phenotypical and functional correction of FSHD is feasible, it requires more than 50% of normal myoblasts, it creates limitations for cell therapy in the FSHD context.


Subject(s)
Cell Differentiation/physiology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/cytology , Adult , Cell Differentiation/genetics , Cells, Cultured , Female , Humans , Male , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phenotype , Young Adult
3.
Histochem Cell Biol ; 145(4): 475-83, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26860865

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy linked to a deletion of a subset of D4Z4 macrosatellite repeats accompanied by a chromatin relaxation of the D4Z4 array on chromosome 4q. In vitro, FSHD primary myoblasts show altered expression of oxidative-related genes and are more susceptible to oxidative stress. Double homeobox 4 (DUX4) gene, encoded within each D4Z4 unit, is normally transcriptionally silenced but is found aberrantly expressed in skeletal muscles of FSHD patients. Its expression leads to a deregulation of DUX4 target genes including those implicated in redox balance. Here, we assessed DNA repair efficiency of oxidative DNA damage in FSHD myoblasts and DUX4-transfected myoblasts. We have shown that the DNA repair activity is altered neither in FSHD myoblasts nor in immortalized human myoblasts transiently expressing DUX4. DNA damage caused by moderate doses of an oxidant is efficiently repaired while FSHD myoblasts exposed for 24 h to high levels of oxidative stress accumulated more DNA damage than normal myoblasts, suggesting that FSHD myoblasts remain more vulnerable to oxidative stress at high doses of oxidants.


Subject(s)
DNA Damage , DNA Repair , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts, Skeletal/metabolism , Oxidative Stress , Cells, Cultured , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/pathology , Oxidative Stress/drug effects
4.
J Cell Mol Med ; 18(2): 208-17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24341522

ABSTRACT

Muscular dystrophy is a condition potentially predisposing for cancer; however, currently, only Myotonic dystrophy patients are known to have a higher risk of cancer. Here, we have searched for a link between facioscapulohumeral dystrophy (FSHD) and cancer by comparing published transcriptome signatures of FSHD and various malignant tumours and have found a significant enrichment of cancer-related genes among the genes differentially expressed in FSHD. The analysis has shown that gene expression profiles of FSHD myoblasts and myotubes resemble that of Ewing's sarcoma more than that of other cancer types tested. This is the first study demonstrating a similarity between FSHD and cancer cell expression profiles, a finding that might indicate the existence of a common step in the pathogenesis of these two diseases.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , Neoplasm Proteins/genetics , Sarcoma, Ewing/genetics , Transcriptome , Chromosome Aberrations , Chromosomes, Human, Pair 4 , Epigenesis, Genetic , Gene Expression , Gene Expression Profiling , Humans , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/pathology , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
5.
J Biol Chem ; 288(49): 34989-5002, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24145033

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts, Skeletal/metabolism , Adult , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Female , Gene Expression Profiling , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Muscle Development/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts, Skeletal/pathology , Up-Regulation , Young Adult
6.
Materials (Basel) ; 17(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38591385

ABSTRACT

The rapid development of electric vehicles, unmanned aerial vehicles, and wearable electronic devices has led to great interest in research related to the synthesis of graphene with a high specific surface area for energy applications. However, the problem of graphene synthesis scalability, as well as the lengthy duration and high energy intensity of the activation processes of carbon materials, are significant disadvantages. In this study, a novel reactor was developed for the green, simple, and scalable electrochemical synthesis of graphene oxide with a low oxygen content of 14.1%. The resulting material was activated using the fast joule heating method. The processing of mildly oxidized graphene with a high-energy short electrical pulse (32 ms) made it possible to obtain a graphene-based porous carbon material with a specific surface area of up to 1984.5 m2/g. The increase in the specific surface area was attributed to the rupture of the original graphene flakes into smaller particles due to the explosive release of gaseous products. In addition, joule heating was able to instantly reduce the oxidized graphene and decrease its electrical resistance from >10 MΩ/sq to 20 Ω/sq due to sp2 carbon structure regeneration, as confirmed by Raman spectroscopy. The low energy intensity, simplicity, and use of environment-friendly chemicals rendered the proposed method scalable. The resulting graphene material with a high surface area and conductivity can be used in various energy applications, such as Li-ion batteries and supercapacitors.

7.
BMC Genomics ; 14: 265, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597168

ABSTRACT

BACKGROUND: miRNA profiling performed in myogenic cells and biopsies from skeletal muscles has previously identified miRNAs involved in myogenesis. RESULTS: Here, we have performed miRNA transcriptome profiling in human affinity-purified CD56+ myoblasts induced to differentiate in vitro. In total, we have identified 60 miRNAs differentially expressed during myogenic differentiation. Many were not known for being differentially expressed during myogenic differentiation. Of these, 14 (miR-23b, miR-28, miR-98, miR-103, miR-107, miR-193a, miR-210, miR-324-5p, miR-324-3p, miR-331, miR-374, miR-432, miR-502, and miR-660) were upregulated and 6 (miR-31, miR-451, miR-452, miR-565, miR-594 and miR-659) were downregulated. mRNA transcriptome profiling performed in parallel resulted in identification of 6,616 genes differentially expressed during myogenic differentiation. CONCLUSIONS: This simultaneous miRNA/mRNA transcriptome profiling allowed us to predict with high accuracy target genes of myogenesis-related microRNAs and to deduce their functions.


Subject(s)
Cell Differentiation/genetics , MicroRNAs/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism , RNA, Messenger/metabolism , CD56 Antigen/genetics , Down-Regulation , Gene Expression Profiling , Humans , MicroRNAs/physiology , RNA, Messenger/genetics , Up-Regulation
8.
Materials (Basel) ; 16(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36769966

ABSTRACT

In this study, cotton e-textiles were obtained using two types of graphene oxide. The first type of graphene oxide was synthesized using the Hummers' method. The second type was obtained by the electrochemical exfoliation of graphite in an ammonium salt solution. It was shown that e-textiles based on electrochemically exfoliated graphene have a higher electrical conductivity (2 kΩ/sq) than e-textiles based on graphene oxide obtained by the Hummers' method (585 kΩ/sq). In addition, textiles based on electrochemically exfoliated graphene exhibit better washing and mechanical stress stability. The electrical resistance of the e-textiles increased only 1.86 times after 10 cycles of washing, compared with 48 times for the Hummers' method graphene oxide textiles. The X-ray photoelectron spectra of the two types of graphene oxides showed similarity in their functional compositions after reduction. Studies of individual graphene flakes by atomic force microscopy showed that graphene oxide of the second type had a smaller lateral size. Raman spectroscopy showed a higher degree of sp2 structure regeneration after reduction for the second type of graphene. These properties and the tendency to form agglomerated particles determine the mechanochemical stability and high electrical conductivity of e-textiles based on electrochemically exfoliated graphene.

9.
J Biol Chem ; 286(52): 44620-31, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-21937448

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.


Subject(s)
Chromosomes, Human, Pair 4/metabolism , Enhancer Elements, Genetic , Kruppel-Like Transcription Factors/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/metabolism , Nuclear Proteins/metabolism , Animals , Chromosomes, Human, Pair 4/genetics , Cricetinae , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation/genetics , HeLa Cells , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Muscle Development/genetics , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , MyoD Protein/genetics , MyoD Protein/metabolism , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Front Cell Dev Biol ; 9: 669354, 2021.
Article in English | MEDLINE | ID: mdl-34249923

ABSTRACT

The human thyroid gland acquires a differentiation program as early as weeks 3-4 of embryonic development. The onset of functional differentiation, which manifests by the appearance of colloid in thyroid follicles, takes place during gestation weeks 10-11. By 12-13 weeks functional differentiation is accomplished and the thyroid is capable of producing thyroid hormones although at a low level. During maturation, thyroid hormones yield increases and physiological mechanisms of thyroid hormone synthesis regulation are established. In the present work we traced the process of thyroid functional differentiation and maturation in the course of human development by performing transcriptomic analysis of human thyroids covering the period of gestation weeks 7-11 and comparing it to adult human thyroid. We obtained specific transcriptomic signatures of embryonic and adult human thyroids by comparing them to non-thyroid tissues from human embryos and adults. We defined a non-TSH (thyroid stimulating hormone) dependent transition from differentiation to maturation of thyroid. The study also sought to shed light on possible factors that could replace TSH, which is absent in this window of gestational age, to trigger transition to the emergence of thyroid function. We propose a list of possible genes that may also be involved in abnormalities in thyroid differentiation and/or maturation, hence leading to congenital hypothyroidism. To our knowledge, this study represent the first transcriptomic analysis of human embryonic thyroid and its comparison to adult thyroid.

11.
J Med Virol ; 82(2): 232-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20029799

ABSTRACT

Systematic studies of the circulation of hepatitis C virus (HCV) recombinants in different parts of the world have been initiated only recently, and no detailed information on this subject is available. The aim of the current investigation was to determine the frequency of HCV recombinants in intravenous drug users (IVDU) from two European countries. HCV RNA from serum samples was tested by RT-PCR with primers derived from the core and NS5B regions with subsequent sequencing and genotype assignment. The 118 samples from Germany (100%) and 45 out of 47 (96%) sera from Russia demonstrated concordant genotyping results. In the two genotype discrepant sera from Russia 2k/1b recombinants were identified. In order to test the hypothesis that the individuals from the IVDU group might be multiply exposed to various genotypes, 145 out of 165 genotyped serum samples, which were found to be positive for anti-NS4 antibodies, were serotyped with the Murex HCV serotyping kit that is based on detection of antibodies to type-specific peptides derived from the NS4 proteins of different HCV genotypes. Discrepancy in genotype and serotype attributions was observed in 11% cases. Retesting of 99 type 1a or 3a samples with a set of type- and subtype-specific primers revealed the presence of a mixed infection only in one case (1a/3a). Thus, the cases of the mixed infection with different HCV genotypes as well as the recombinant forms of HCV are very rare even in such a highly exposed group as IVDU.


Subject(s)
Hepacivirus/genetics , Hepatitis C/virology , Recombination, Genetic , Adolescent , Adult , Animals , Base Sequence , Drug Users , Female , Genotype , Germany , Hepacivirus/classification , Hepacivirus/isolation & purification , Humans , Male , Middle Aged , Molecular Sequence Data , Phenotype , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Russia , Sequence Analysis, DNA , Sequence Homology , Serotyping , Serum/virology , Substance Abuse, Intravenous , Young Adult
12.
Neuromuscul Disord ; 19(1): 17-20, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18974002

ABSTRACT

Despite the discovery of the deletion on the long arm of the chromosome 4 specific for facioscapulohumeral muscular dystrophy (FSHD), the identity of the gene responsible for the disease still remains a mystery. In this review we focus on two genes, DUX4 and DUX4c, encoded by the D4Z4 repeats present in the 4q35 locus, which is affected in the disease.


Subject(s)
Chromosomes, Human, Pair 4/genetics , DNA, Intergenic/genetics , Genetic Predisposition to Disease/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Mutation/genetics , Pseudogenes/genetics , Animals , Gene Deletion , Homeodomain Proteins/genetics , Humans , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/physiopathology , Protein Isoforms/genetics
13.
Oncotarget ; 7(40): 65090-65108, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27556182

ABSTRACT

We performed transcriptome profiling of human immortalized myoblasts (MB) transiently expressing double homeobox transcription factor 4 (DUX4) and double homeobox transcription factor 4 centromeric (DUX4c) and identified 114 and 70 genes differentially expressed in DUX4- and DUX4c-transfected myoblasts, respectively. A significant number of differentially expressed genes were involved in inflammation, cellular migration and chemotaxis suggesting a role for DUX4 and DUX4c in these processes. DUX4 but not DUX4c overexpression resulted in upregulation of the CXCR4 (C-X-C motif Receptor 4) and CXCL12 (C-X-C motif ligand 12 also known as SDF1) expression in human immortalized myoblasts. In a Transwell cell migration assay, human bone marrow-derived mesenchymal stem cells (BMSCs) were migrating more efficiently towards human immortalized myoblasts overexpressing DUX4 as compared to controls; the migration efficiency of DUX4-transfected BMSCs was also increased. DUX4c overexpression in myoblasts or in BMSCs had no impact on the rate of BMSC migration. Antibodies against SDF1 and CXCR4 blocked the positive effect of DUX4 overexpression on BMSC migration. We propose that DUX4 controls the cellular migration of mesenchymal stem cells through the CXCR4 receptor.


Subject(s)
Cell Movement/physiology , Chemokine CXCL12/metabolism , Homeodomain Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Receptors, CXCR4/metabolism , Cells, Cultured , Humans , Myoblasts/metabolism , Transcriptome
14.
Free Radic Biol Med ; 99: 244-258, 2016 10.
Article in English | MEDLINE | ID: mdl-27519269

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is one of the three most common muscular dystrophies in the Western world, however, its etiology remains only partially understood. Here, we provide evidence of constitutive DNA damage in in vitro cultured myoblasts isolated from FSHD patients and demonstrate oxidative DNA damage implication in the differentiation of these cells into phenotypically-aberrant myotubes. Double homeobox 4 (DUX4), the major actor in FSHD pathology induced DNA damage accumulation when overexpressed in normal human myoblasts, and RNAi-mediated DUX4 inhibition reduced the level of DNA damage in FSHD myoblasts. Addition of tempol, a powerful antioxidant, to the culture medium of proliferating DUX4-transfected myoblasts and FSHD myoblasts reduced the level of DNA damage, suggesting that DNA alterations are mainly due to oxidative stress. Antioxidant treatment during the myogenic differentiation of FSHD myoblasts significantly reduced morphological defects in myotube formation. We propose that the induction of DNA damage is a novel function of the DUX4 protein affecting myogenic differentiation of FSHD myoblasts.


Subject(s)
Homeodomain Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , Oxidative Stress , Antioxidants/pharmacology , Case-Control Studies , Cell Differentiation , Cyclic N-Oxides/pharmacology , DNA Damage , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/metabolism , Humans , Molecular Sequence Annotation , Multigene Family , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spin Labels , Transfection
15.
Eur J Hum Genet ; 22(9): 1117-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24448543

ABSTRACT

Mechanisms that regulate attachment of the scaffold/matrix attachment regions (S/MARs) to the nuclear matrix remain largely unknown. We have studied the effect of simple sequence length polymorphism (SSLP), DNA methylation and chromatin organization in an S/MAR implicated in facioscapulohumeral dystrophy (FSHD), a hereditary disease linked to a partial deletion of the D4Z4 repeat array on chromosome 4q. This FSHD-related nuclear matrix attachment region (FR-MAR) loses its efficiency in myoblasts from FSHD patients. Three criteria were found to be important for high-affinity interaction between the FR-MAR and the nuclear matrix: the presence of a specific SSLP haplotype in chromosomal DNA, the methylation of one specific CpG within the FR-MAR and the absence of histone H3 acetylated on lysine 9 in the relevant chromatin fragment.


Subject(s)
Epigenesis, Genetic , Matrix Attachment Regions/genetics , Microsatellite Repeats/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Nuclear Matrix/metabolism , Polymorphism, Genetic , Acetylation , Adult , Base Sequence , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , CpG Islands , DNA Methylation , Female , Histones/metabolism , Humans , Male , Middle Aged , Molecular Sequence Data , Myoblasts/metabolism , Protein Binding
16.
PLoS One ; 8(1): e53033, 2013.
Article in English | MEDLINE | ID: mdl-23326377

ABSTRACT

Little is known about differences between induced pluripotent stem cells produced from tissues originating from the same germ layer. We have generated human myoblast-derived iPS cells by retroviral transduction of human primary myoblasts with the OCT3/4, SOX2, KLF4 and MYC coding sequences and compared them to iPS produced from human primary fibroblasts. When cultivated in vitro, these iPS cells proved similar to human embryonic stem cells in terms of morphology, expression of embryonic stemness markers and gene promoter methylation patterns. Embryonic bodies were derived that expressed endodermal, mesodermal as well as ectodermal markers. A comparative analysis of transcription patterns revealed significant differences in the gene expression pattern between myoblast- and fibroblast-derived iPS cells. However, these differences were reduced in the mesenchymal stem cells derived from the two iPS cell types were compared.


Subject(s)
Cell Differentiation/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Induced Pluripotent Stem Cells/metabolism , Myoblasts/metabolism , Animals , Cells, Cultured , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/cytology , Germ Layers/cytology , Germ Layers/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Muscle Development/genetics , Myoblasts/cytology , Octamer Transcription Factor-3/genetics , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-myc/genetics , Retroviridae/genetics , SOXB1 Transcription Factors/genetics , Transduction, Genetic
17.
BMC Res Notes ; 1: 135, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19105832

ABSTRACT

BACKGROUND: Introduction of new antibiotic resistance genes in the plasmids of interest is a frequent task in molecular cloning practice. Classical approaches involving digestion with restriction endonucleases and ligation are time-consuming. FINDINGS: We have created a set of insertion vectors (pINS) carrying genes that provide resistance to various antibiotics (puromycin, blasticidin and G418) and containing a loxP site. Each vector (pINS-Puro, pINS-Blast or pINS-Neo) contains either a chloramphenicol or a kanamycin resistance gene and is unable to replicate in most E. coli strains as it contains a conditional R6Kgamma replication origin. Introduction of the antibiotic resistance genes into the vector of interest is achieved by Cre-mediated recombination between the replication-incompetent pINS and a replication-competent target vector. The recombination mix is then transformed into E. coli and selected by the resistance marker (kanamycin or chloramphenicol) present in pINS, which allows to recover the recombinant plasmids with 100% efficiency. CONCLUSION: Here we propose a simple strategy that allows to introduce various antibiotic-resistance genes into any plasmid containing a replication origin, an ampicillin resistance gene and a loxP site.

18.
PLoS One ; 3(10): e3389, 2008.
Article in English | MEDLINE | ID: mdl-18852887

ABSTRACT

The number of D4Z4 repeats in the subtelomeric region of chromosome 4q is strongly reduced in patients with Facio-Scapulo-Humeral Dystrophy (FSHD). We performed chromosome conformation capture (3C) analysis to document the interactions taking place among different 4q35 markers. We found that the reduced number of D4Z4 repeats in FSHD myoblasts was associated with a global alteration of the three-dimensional structure of the 4q35 region. Indeed, differently from normal myoblasts, the 4qA/B marker interacted directly with the promoters of the FRG1 and ANT1 genes in FSHD cells. Along with the presence of a newly identified transcriptional enhancer within the 4qA allele, our demonstration of an interaction occurring between chromosomal segments located megabases away on the same chromosome 4q allows to revisit the possible mechanisms leading to FSHD.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , Chromosomes, Human, Pair 4/genetics , Gene Expression Regulation , Gene Rearrangement , Muscular Dystrophy, Facioscapulohumeral/genetics , Nuclear Proteins/genetics , Cells, Cultured , Fibroblasts , Humans , Microfilament Proteins , Promoter Regions, Genetic , RNA-Binding Proteins , Repetitive Sequences, Nucleic Acid , Transcription Factors
19.
Genes Dev ; 18(9): 992-1006, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15132993

ABSTRACT

The regulation of telomerase action, and its coordination with conventional DNA replication and chromosome end "capping," are still poorly understood. Here we describe a genetic screen in yeast for mutants with relaxed telomere length regulation, and the identification of Pol12, the B subunit of the DNA polymerase alpha (Pol1)-primase complex, as a new factor involved in this process. Unlike many POL1 and POL12 mutations, which also cause telomere elongation, the pol12-216 mutation described here does not lead to either reduced Pol1 function, increased telomeric single-stranded DNA, or a reduction in telomeric gene silencing. Instead, and again unlike mutations affecting POL1, pol12-216 is lethal in combination with a mutation in the telomere end-binding and capping protein Stn1. Significantly, Pol12 and Stn1 interact in both two-hybrid and biochemical assays, and their synthetic-lethal interaction appears to be caused, at least in part, by a loss of telomere capping. These data reveal a novel function for Pol12 and a new connection between DNA polymerase alpha and Stn1. We propose that Pol12, together with Stn1, plays a key role in linking telomerase action with the completion of lagging strand synthesis, and in a regulatory step required for telomere capping.


Subject(s)
DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , DNA Primase/chemistry , DNA Primase/metabolism , Telomere/metabolism , Cell Cycle Proteins/metabolism , DNA Polymerase I/genetics , DNA Primase/genetics , Genes, Fungal , Mutation , Phenotype , Protein Subunits , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Telomere-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL