Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Curr Issues Mol Biol ; 46(2): 1164-1176, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38392192

ABSTRACT

Activin A belongs to the transforming growth factor (TGF) family member, which exhibits a wide range of biological activities, including the regulation of cellular proliferation and differentiation and the promotion of neuronal survival. The isolation of AA from natural sources can only produce limited quantities of this bioactive protein. In this study, the whole gene of the precursor form of recombinant human activin A (rhAA) contains a signal peptide, and a pro-region and a mature region were cloned into an expression vector under the control of the rice α-amylase 3D (RAmy3D) promoter. To obtain the mature (active) form of rhAA, an enterokinase cleavage site was inserted between the pro-region and mature region of rhAA. The rice seed (Oryza sativa L. cv. Dongjin) was transformed with recombinant vectors by the Agrobacterium-mediated method, and the integration of the target gene into the plant genome was confirmed by genomic PCR. The transcript expression of rhAA in transgenic rice calli was confirmed by a Northern blot analysis of mRNA. The production of rhAA was verified by Western blot analysis and ELISA. The accumulation of secreted rhAA in the culture medium was purified by Ni2+-NTA. The mature form of AA was released from the precursor form of rhAA after proteolytically processing with enterokinase. Western blot shows that the mature AA was split into monomer and homodimer with molecular weights of 14 kDa and 28 kDa under reducing and non-reducing conditions, respectively. These results suggest that the mature form of rhAA could be produced and purified using transgenic rice cell suspension culture.

2.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373512

ABSTRACT

Flowering time (in rice, termed the heading date), plant height, and grain number are crucial agronomic traits for rice productivity. The heading date is controlled via environmental factors (day length and temperature) and genetic factors (floral genes). TERMINAL FLOWER 1 (TFL1) encodes a protein that controls meristem identity and participates in regulating flowering. In this study, a transgenic approach was used to promote the heading date in rice. We isolated and cloned apple MdTFL1 for early flowering in rice. Transgenic rice plants with antisense MdTFL1 showed an early heading date compared with wild-type plants. A gene expression analysis suggested that introducing MdTFL1 upregulated multiple endogenous floral meristem identity genes, including the (early) heading date gene family FLOWERING LOCUS T and MADS-box transcription factors, thereby shortening vegetable development. Antisense MdTFL1 also produced a wide range of phenotypic changes, including a change in overall plant organelles that affected an array of traits, especially grain productivity. The transgenic rice exhibited a semi-draft phenotype, increased leaf inclination angle, restricted flag leaf length, reduced spikelet fertility, and fewer grains per panicle. MdTFL1 plays a central role in regulating flowering and in various physiological aspects. These findings emphasize the role of TFL1 in regulating flowering in shortened breeding and expanding its function to produce plants with semi-draft phenotypes.


Subject(s)
Oryza , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/metabolism , Plant Breeding , Phenotype , Flowers , Plants, Genetically Modified , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629128

ABSTRACT

Anthocyanin accumulation is responsible for the coloration of apple fruit, and their accumulation depends on the expression of anthocyanin biosynthesis-related genes. Light is an environmental stimulus that induces fruit color by regulating genes involved in the anthocyanin biosynthesis pathway. In this study, the roles of light and genetic factors on fruit coloration and anthocyanin accumulation in apple fruit were investigated. Three genes in the anthocyanin biosynthesis pathway, MdCHS, MdANS, and MdUFGT1, were synthesized and cloned into a viral-based expression vector system for transient expression in 'Ruby S' apple fruits. Apple fruits were agroinfiltrated with expression vectors harboring MdCHS, MdANS, and MdUFGT1. Agroinfiltrated apple fruits were then either kept in the dark (bagged fruits) or exposed to light (exposed fruits). The agroinfiltrated fruits showed significantly different coloration patterns, transcript expression levels, and anthocyanin accumulation compared to the control fruits. Moreover, these parameters were higher in exposed fruits than in bagged fruits. For stable expression, MdCHS was introduced into a binary vector under the control of the rice α-amylase 3D (RAmy3D) promoter. The ectopic overexpression of MdCHS in transgenic rice calli showed a high accumulation of anthocyanin content. Taken together, our findings suggest that light, together with the overexpression of anthocyanin biosynthesis genes, induced the coloration and accumulation of anthocyanin content in apple fruits by upregulating the expression of the genes involved in the anthocyanin biosynthesis pathway.


Subject(s)
Malus , Oryza , Anthocyanins/genetics , Fruit/genetics , Malus/genetics
4.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682686

ABSTRACT

Apples (Malus × domestica Borkh.) require up to several years for flowering and bearing fruits. The transition from vegetative to reproductive phase is controlled by floral regulators such as TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT). TFL1 mediates the maintenance of vegetative phase, unlike the antagonistic function of FT to promote the transition into reproductive phase. In this study, we isolated apple TFL1-like gene (MdTFL1) to elucidate various phenotypic traits triggered by the antisense expression of MdTFL1 in tobacco apart from its floral induction function. Early flowering was observed in the tobacco line with MdTFL1 knockout, indicating the reduced time for transition to vegetative phases. Quantitative reverse-transcription PCR showed upregulation of genes involved in the regulation of floral induction, including NtAP1, NtSOC1, NFL1, and NtFTs, and downregulation of carotenoid cleavage dioxygenases (CCDs) and CEN-like genes in transgenic lines. Interestingly, transgenic tobacco expressing antisense MdTFL1 exhibited distinct morphological changes in lateral shoot outgrowth, internode length, and the development of leaves, flowers, and fruits. The results suggested that using the antisense expression of MdTFL1 gene is one of the approaches to shorten the vegetable phase and proposed improvement of plant architecture in horticultural crops.


Subject(s)
Malus , Flowers/metabolism , Gene Expression Regulation, Plant , Malus/metabolism , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
5.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682835

ABSTRACT

The coloration of the apple fruit (Malus × domestica Borkh.) depends on pigment content. Light stimulus activates a broad range of photosynthesis-related genes, including carotenoids. The effect of light on two red commercial apple cultivars, 'Summer Prince' and 'Arisoo' at the juvenile stage were examined. Apple fruits were either bagged to reduce light irradiation or were exposed to direct, enhanced sunlight (reflected). The pigment content and the expression of carotenoid metabolism genes in the peel and flesh of apple fruits were significantly different between the shaded and the reflected parts. These parameters were also different in the two cultivars, highlighting the contribution of the genetic background. Further, a combination of light and transient overexpression of carotenogenic genes increased fruit coloration and pigment content in the variety 'RubyS'. Western blot analysis showed the expression of small heat shock proteins (smHSP) in lysates extracted from the reflected part of the fruits but not in the bagged fruits, indicating the activation of smHSP in response to heat generated by the reflected light. Therefore, the synergy between the genes and the environment dictates the color of apple fruits.


Subject(s)
Heat-Shock Proteins, Small , Malus , Carotenoids/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression , Gene Expression Regulation, Plant , Heat-Shock Proteins, Small/genetics , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Sci Rep ; 13(1): 11583, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463950

ABSTRACT

In grafted apple, rootstock-derived signals influence scion cold tolerance by initiating physiological changes to survive over the winter. To understand the underlying molecular interactions between scion and rootstock responsive to cold, we developed transcriptomics and metabolomics data in the stems of two scion/rootstock combinations, 'Gala'/'G202' (cold resistant rootstock) and 'Gala'/'M9' (cold susceptible rootstock). Outer layers of scion and rootstock stem, including vascular tissues, were collected from the field-grown grafted apple during the winter. The clustering of differentially expressed genes (DEGs) and gene ontology enrichment indicated distinct expression dynamics in the two graft combinations, which supports the dependency of scion cold tolerance on the rootstock genotypes. We identified 544 potentially mobile mRNAs of DEGs showing highly-correlated seasonal dynamics between scion and rootstock. The mobility of a subset of 544 mRNAs was validated by translocated genome-wide variants and the measurements of selected RNA mobility in tobacco and Arabidopsis. We detected orthologous genes of potentially mobile mRNAs in Arabidopsis thaliana, which belong to cold regulatory networks with RNA mobility. Together, our study provides a comprehensive insight into gene interactions and signal exchange between scion and rootstock responsive to cold. This will serve for future research to enhance cold tolerance of grafted tree crops.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , RNA/metabolism , Gene Expression Profiling , Metabolomics , Genotype
7.
Plants (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34961121

ABSTRACT

Nitrogen (N) is an essential macronutrient that regulates diverse physiological processes for plant survival and development. In apple orchards, inappropriate N conditions can cause imbalanced growth and subsequent physiological disorders in trees. In order to investigate the molecular basis underlying the physiological signals for N stress responses, we examined the metabolic signals responsive to contrasting N stress conditions (deficient/excessive) in apple leaves using transcriptome approaches. The clustering of differentially expressed genes (DEGs) showed the expression dynamics of genes associated with each N stress group. Functional analyses of gene ontology and pathway enrichments revealed the potential candidates of metabolic signals responsible for N-deficient/excessive stress responses. The functional interactions of DEGs in each cluster were further explored by protein-protein interaction network analysis. Our results provided a comprehensive insight into molecular signals responsive to N stress conditions, and will be useful in future research to enhance the nutrition tolerance of tree crops.

8.
PLoS One ; 16(4): e0249975, 2021.
Article in English | MEDLINE | ID: mdl-33836019

ABSTRACT

Fruit abscission is a complex physiological process that is regulated by internal and environmental factors. During early development, apple fruit are exposed to extreme temperature fluctuations that are associated with premature fruit drop; however, their effect on fruit abscission is largely unknown. We hypothesized that fruit abscission is triggered by cold stress and investigated the molecular basis of premature fruit drop using RNA-Seq and metabolomics data from apple fruit undergoing abscission following cold stress in the field. Genes responsive to abscisic acid signaling and cell wall degradation were upregulated during abscission, consistent with the increased abscisic acid concentrations detected by liquid chromatography-mass spectrometry. We performed ex vivo cold shock experiments with excised tree subunits consisting of a branch, pedicel, and fruit. Abscission induction occurred in the cold-stressed subunits with concurrent upregulation of abscisic acid biosynthesis (MdNCED1) and metabolism (MdCYP707A) genes, and ethylene biosynthesis (MdACS1) and receptor (MdETR2) genes in the pedicel. Another key finding was the activation of cytoplasmic streaming in abscission-zone cells detected by electron microscopy. Our results provide a novel insight into the molecular basis of fruit abscission physiology in response to cold stress in apple.


Subject(s)
Abscisic Acid/metabolism , Malus/metabolism , Signal Transduction , Cell Wall/metabolism , Cold Temperature , Cold-Shock Response/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ethylenes/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL