Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G140-G153, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38780469

ABSTRACT

Treatments of colitis, inflammation of the intestine, rely on induction of immune suppression associated with systemic adverse events, including recurrent infections. This treatment strategy is specifically problematic in the increasing population of patients with cancer with immune checkpoint inhibitor (ICI)-induced colitis, as immune suppression also interferes with the ICI-treatment response. Thus, there is a need for local-acting treatments that reduce inflammation and enhance intestinal healing. Here, we investigated the effect and safety of bacterial delivery of short-lived immunomodulating chemokines to the inflamed intestine in mice with colitis. Colitis was induced by dextran sulfate sodium (DSS) alone or in combination with ICI (anti-PD1 and anti-CTLA-4), and Limosilactobacillus reuteri R2LC (L. reuteri R2LC) genetically modified to express the chemokine CXCL12-1α (R2LC_CXCL12, emilimogene sigulactibac) was given perorally. In addition, the pharmacology and safety of the formulated drug candidate, ILP100-Oral, were evaluated in rabbits. Peroral CXCL12-producing L. reuteri R2LC significantly improved colitis symptoms already after 2 days in mice with overt DSS and ICI-induced colitis, which in benchmarking experiments was demonstrated to be superior to treatments with anti-TNF-α, anti-α4ß7, and corticosteroids. The mechanism of action involved chemokine delivery to Peyer's patches (PPs), confirmed by local CXCR4 signaling, and increased numbers of colonic, regulatory immune cells expressing IL-10 and TGF-ß1. No systemic exposure or engraftment could be detected in mice, and product feasibility, pharmacology, and safety were confirmed in rabbits. In conclusion, peroral CXCL12-producing L. reuteri R2LC efficiently ameliorates colitis, enhances mucosal healing, and has a favorable safety profile.NEW & NOTEWORTHY Colitis symptoms are efficiently reduced by peroral administration of probiotic bacteria genetically modified to deliver CXCL12 locally to the inflamed intestine in several mouse models.


Subject(s)
Chemokine CXCL12 , Colitis , Dextran Sulfate , Disease Models, Animal , Limosilactobacillus reuteri , Animals , Colitis/immunology , Colitis/chemically induced , Colitis/drug therapy , Colitis/therapy , Colitis/metabolism , Mice , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Administration, Oral , Rabbits , Probiotics/administration & dosage , Mice, Inbred C57BL , Female , Colon/metabolism , Colon/microbiology , Colon/immunology , Male
2.
J Autoimmun ; 75: 105-117, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27528513

ABSTRACT

As it has been established that demethylation of lysine 27 of histone H3 by the lysine-specific demethylase JMJD3 increases immune responses and thus elicits inflammation, we hypothesize that inhibition of JMJD3 may attenuate autoimmune disorders. We found that in vivo administration of GSK-J4, a selective inhibitor of JMJD3 and UTX, ameliorates the severity of experimental autoimmune encephalomyelitis (EAE). In vitro experiments revealed that the anti-inflammatory effect of GSK-J4 was exerted through an effect on dendritic cells (DCs), promoting a tolerogenic profile characterized by reduced expression of costimulatory molecules CD80/CD86, an increased expression of tolerogenic molecules CD103 and TGF-ß1, and reduced secretion of proinflammatory cytokines IL-6, IFN-γ, and TNF. Adoptive transfer of GSK-J4-treated DCs into EAE mice reduced the clinical manifestation of the disease and decreased the extent of inflammatory CD4+ T cells infiltrating the central nervous system. Notably, Treg generation, stability, and suppressive activity were all exacerbated by GSK-J4-treated DCs without affecting Th1 and Th17 cell production. Our data show that GSK-J4-mediated modulation of inflammation is achieved by a direct effect on DCs and that systemic treatment with GSK-J4 or adoptive transfer of GSK-J4-treated DCs ex vivo may be promising approaches for the treatment of inflammatory and autoimmune disorders.


Subject(s)
Benzazepines/pharmacology , Dendritic Cells/drug effects , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Pyrimidines/pharmacology , Adoptive Transfer , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , B7-1 Antigen/immunology , B7-1 Antigen/metabolism , B7-2 Antigen/immunology , B7-2 Antigen/metabolism , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression/drug effects , Immune Tolerance/genetics , Immune Tolerance/immunology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Jumonji Domain-Containing Histone Demethylases/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta1/immunology , Transforming Growth Factor beta1/metabolism
3.
Clin Dev Immunol ; 2013: 679804, 2013.
Article in English | MEDLINE | ID: mdl-23737814

ABSTRACT

Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4(+) T cells. The forkhead box P3 transcription factor (Foxp3) is a crucial molecule regulating the generation and function of Tregs. Here we show that the foxp3 gene promoter becomes hyperacetylated in in vitro differentiated Tregs compared to naïve CD4(+) T cells. We also show that the histone deacetylase inhibitor TSA stimulated the in vitro differentiation of naïve CD4(+) T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4(+)Foxp3(+) Treg cells.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Immune Tolerance , T-Lymphocytes, Regulatory/drug effects , 5'-Nucleotidase/genetics , 5'-Nucleotidase/immunology , Acetylation , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Apyrase/genetics , Apyrase/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cytokines/biosynthesis , Cytokines/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins , Histones/genetics , Histones/immunology , Histones/metabolism , Mice , Mice, Transgenic , Promoter Regions, Genetic , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
4.
Sci Rep ; 11(1): 1342, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446666

ABSTRACT

Dendritic cells (DCs) promote T-cell mediated tolerance to self-antigens and induce inflammation to innocuous-antigens. This dual potential makes DCs fundamental players in inflammatory disorders. Evidence from inflammatory colitis mouse models and inflammatory bowel diseases (IBD) patients indicated that gut inflammation in IBD is driven mainly by T-helper-1 (Th1) and Th17 cells, suggesting an essential role for DCs in the development of IBD. Here we show that GSK-J4, a selective inhibitor of the histone demethylase JMJD3/UTX, attenuated inflammatory colitis by reducing the inflammatory potential and increasing the tolerogenic features of DCs. Mechanistic analyses revealed that GSK-J4 increased activating epigenetic signals while reducing repressive marks in the promoter of retinaldehyde dehydrogenase isoforms 1 and 3 in DCs, enhancing the production of retinoic acid. This, in turn, has an impact on regulatory T cells (Treg) increasing their lineage stability and gut tropism as well as potentiating their suppressive activity. Our results open new avenues for the treatment of IBD patients.


Subject(s)
Benzazepines/pharmacology , Colitis/immunology , Dendritic Cells/immunology , Inflammatory Bowel Diseases/immunology , Pyrimidines/pharmacology , Tretinoin/immunology , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/immunology , Animals , Colitis/drug therapy , Colitis/genetics , Colitis/pathology , Dendritic Cells/pathology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Mice , Mice, Knockout , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology
5.
Mucosal Immunol ; 14(2): 411-419, 2021 03.
Article in English | MEDLINE | ID: mdl-32681027

ABSTRACT

The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα-/- and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms.


Subject(s)
Gastrointestinal Microbiome/immunology , Intestines/immunology , Liver X Receptors/metabolism , Lymph Nodes/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Cholesterol/metabolism , Immunomodulation , Liver X Receptors/genetics , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
6.
Cell Rep ; 32(5): 107979, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32755573

ABSTRACT

Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35+ colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1+ macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1+ macrophages to maintain TNF-mediated intestinal homeostasis.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Homeostasis , Intestines/physiology , Lysophospholipids/metabolism , Macrophages/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Zebrafish Proteins/metabolism , Animals , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Gastrointestinal Microbiome , Gene Deletion , Humans , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Phosphoric Diester Hydrolases/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Zebrafish
7.
PLoS One ; 13(9): e0204181, 2018.
Article in English | MEDLINE | ID: mdl-30235302

ABSTRACT

The gut homing receptor integrin α4ß7 is essential for the migration of pro-inflammatory T cells into the gut mucosa. Since intestinal neoplasia has been associated with chronic inflammation, we investigated whether interfering with gut-homing affects intestinal tumorigenesis. Using chemically induced and spontaneous intestinal tumor models we showed that lack of ß7 integrin significantly impairs tumor growth without affecting tumor frequencies, with a mild translatable effect on overall survival. This correlates with human data showing lower MAdCAM-1 expression and disease-free survival in colorectal cancer patients. Thus, paradoxically in contrast to extra-intestinal tumors, blocking migration of immune cells into the gut might have a positive therapeutic effect on intestinal neoplasia.


Subject(s)
Integrin beta Chains/metabolism , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Proliferation , Inflammation/pathology , Kaplan-Meier Estimate , Mice , Mice, Inbred C57BL , Survival Analysis , T-Lymphocytes/immunology , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL