Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Environ Geochem Health ; 46(8): 291, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976115

ABSTRACT

Potential toxic elements emanating from extracted ores during gold processing present occupational and unintentional health hazards in communities, the general populace, and the environment. This study investigated the concentrations and potential health effects of metal content in the topsoils of Obuasi municipality, which has been mined for gold over the past century. Surface topsoil samples, sieved to 250 µm, were initially scanned for metals using x-ray fluorescence techniques, followed by confirmation via ICP-MS. In vitro bioaccessibility assays were conducted using standard methods. The geoaccumulation indices (Igeo) indicate high enrichment of As (Igeo = 6.28) and Cd (Igeo = 3.80) in the soils, especially in the eastern part of the municipality where illegal artisanal mining is prevalent. Additionally, the southern corridor, situated near a gold mine, exhibited significant levels of As and Mn. Results obtained for the total metal concentrations and contamination indices confirmed the elevation of the studied potential toxic elements in the Obuasi community. A hazard index value of 4.42 and 3.30 among children and adults, respectively, indicates that indigens, especially children, are susceptible to non-cancer health effects.


Subject(s)
Gold , Mining , Soil Pollutants , Humans , Ghana , Soil Pollutants/analysis , Environmental Monitoring/methods , Child , Adult , Metals, Heavy/analysis , Biological Availability , Arsenic/analysis , Environmental Exposure , Risk Assessment
2.
Lancet ; 400(10352): 605-615, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35988569

ABSTRACT

BACKGROUND: Anterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability. METHODS: We did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score-4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367. FINDINGS: Between Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5-13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications. INTERPRETATION: Surgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management. FUNDING: The UK National Institute for Health Research Health Technology Assessment Programme.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Knee Injuries , Anterior Cruciate Ligament Injuries/diagnosis , Anterior Cruciate Ligament Injuries/etiology , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/adverse effects , Anterior Cruciate Ligament Reconstruction/methods , Humans , Knee Injuries/etiology , Knee Injuries/rehabilitation , Knee Injuries/surgery , Knee Joint/surgery , State Medicine , Treatment Outcome
3.
Environ Geochem Health ; 45(7): 4515-4531, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36853522

ABSTRACT

Agbogbloshie in Accra, Ghana, was a center for informal e-waste recycling until it was closed recently. This study investigated the potential health risks of toxic metals (including As, Cd, Cu, Ni, Pb, Sb, and Zn) found in the surface soils based on their concentrations and in vitro bioaccessibility. Mean concentrations at the burning sites were As: 218; Cd: 65; Cr: 182; Cu: 15,841; Ni: 145; Pb: 6,106; Sb: 552; and Zn: 16,065 mg/kg while the dismantling sites had mean concentrations of As: 23; Cd: 38; Cr: 342; Cu: 3239; Ni: 96; Pb: 681; Sb: 104; and Zn: 1658 mg/kg. The findings confirmed the enrichment of potentially toxic metals at the dismantling and burning sites, exceeding international environmental soil quality guidelines. Based on the total metal concentrations, bioaccessibility, and calculated risk indices, the risks associated with incidental ingestion of soil-borne metal contaminants at the dismantling and burning sites were very high. Despite evidence of higher metal concentrations in the communities near the burning and dismantling sites, the human health risk associated with soil ingestion was significantly lower in the surrounding neighborhood.


Subject(s)
Electronic Waste , Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/toxicity , Metals, Heavy/analysis , Environmental Monitoring , Ghana , Electronic Waste/analysis , Cadmium , Lead , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil , Risk Assessment , China
4.
Environ Geochem Health ; 45(12): 9875-9889, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878226

ABSTRACT

The concentration and bioaccessibility of potentially toxic metals, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, were determined in surface soil samples from a mining community (Kenyasi) and a non-mining community (Sunyani) in Ghana, to investigate the contribution of mining activities to the environmental burden of potentially toxic metals. The study found significant differences in metal concentrations (p < 0.05) in As, Cd, Cu, Mn, Ni, and Zn, but no significant difference (p > 0.05) in Pb and Cr between the two communities. The study found a moderate correlation between pH and metal concentrations in the mining community and a moderate positive correlation with As, Cd, Cr, Cu, Ni, and Zn in the non-mining community. The distribution pattern revealed elevated levels of toxic metals in the southeastern corridor of the mining community, which is close to a gold mine. Most heavy metals were concentrated in the commercial community's southern zone, with more residents and private elementary schools. Metal bioaccessibility was variable, and except for Cu and Zn, the mean bioaccessibility was less than 50% for a given metal. Contamination factor, geoaccumulation index, and soil enrichment factor suggested very high contamination of Cd, and a considerable to moderate contamination of As, Ni, Zn, and Cu at both the mining and non-mining communities. The above observations and the pollution and risk indices employed in this study confirmed that the mining community was more polluted (PLI = 2.145) than the non-mining community (PLI = 1.372). The total metal hazard (HI) exceeded thresholds by three and four times at non-mining and mining sites. Regular monitoring is necessary, especially in the mining community, to prevent soil metal accumulation.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil , Environmental Monitoring , Ghana , Cadmium , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment , China
5.
Int J Environ Health Res ; 32(2): 426-436, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32482117

ABSTRACT

The presence of metal contaminants in agricultural soils and subsequent uptake by food crops can pose serious human health risk. In this study, we assessed the levels of toxic metals - arsenic, chromium, copper, iron, manganese, nickel, and zinc - in soils and some edible root tuber crops from two gold mining and two non-mining communities in Ghana to evaluate the potential human health risks associated with exposure to these metals. Concentrations of the metals in 154 soil and edible root tuber samples were analyzed using field portable x-ray fluorescence spectrometer prior to confirmation by inductively coupled plasma mass spectrometry. Bioaccessibility of the metals was determined using an in vitro physiologically based extraction technique. Concentrations of the metals were generally higher in the gold mining communities than in the non-mining communities. The contamination indices indicated low to moderate contamination of the soil and food crops. Bioaccessibility for the metals varied from 1.7% (Fe) to 62.3 (Mn). Overall, the risks posed by the metals upon consumption of the tubers were low.


Subject(s)
Metals, Heavy , Soil Pollutants , Agriculture , Environmental Monitoring , Ghana , Gold , Humans , Metals, Heavy/analysis , Mining , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
6.
Environ Geochem Health ; 44(2): 497-509, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33141377

ABSTRACT

Over 1000 people make a living by processing electronic and electrical waste (E-waste) and scrap metals for the recovery of valuable metals and integrated circuits at Dagomba Line, Kumasi, Ghana. The processing includes activities such as dismantling, open burning and open dumping of E-waste which can potentially release toxic metals into the environment and thus impact the health of recyclers and nearby residents. This study investigated the distribution of toxic metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb and Zn) in surface soils at the E-waste recycling sites and determined the associated human health risk via ingestion incorporating bioaccessibility measurements. Metal concentrations in the activity sites were highly elevated, significantly higher than those in the surrounding area and exceeded international soil quality guidelines such as the Canadian soil quality guidelines for residential land use and the Dutch Intervention Value. Bioaccessibility was high for Pb (70.8%), Cd (64.1%), Cu (62.3%) and Ni (53.6%) which could be credited to the existence of oxidized species as a result of the E-waste burning. Non-carcinogenic effects were unacceptably high (hazard indices > 1) at 14 out of 31 sites, and the cancer risk for arsenic for adult workers was greater than 1 × 10-5 at five of the sampling sites.


Subject(s)
Electronic Waste , Metals, Heavy , Soil Pollutants , Adult , Canada , China , Eating , Electronic Waste/analysis , Environmental Monitoring , Ghana , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Recycling , Risk Assessment , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
7.
Environ Geochem Health ; 39(4): 759-777, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27352294

ABSTRACT

Elemental concentrations and bioaccessibility were determined in background soils collected in Canada as part of the North American Geochemical Landscapes Project. The concentrations of As, Cr, Cu, Co, Ni and Zn were higher in the C-horizon (parent material) compared to 0-5 cm (surface soil), and this observation along with the regional distribution suggested that most of the variability in concentrations of these elements were governed by the bedrock characteristics. Unlike the above-stated elements, Pb and Cd concentrations were higher in the surface layer reflecting the potential effects of anthropogenic deposition. Elemental bioaccessibility was variable decreasing in the order Cd > Pb > Cu > Zn > Ni > Co > As > Cr for the surface soils. With the exception of As, bioaccessibility was generally higher in the C-horizon soils compared to the 0-5 cm soils. The differences in metal bioaccessibility between the 0-5 cm and the C-horizon and among the provinces may reflect geological processes and speciation. The mean, median or 95th percentile bioaccessibility for As, Cr, Cu, Co, Ni and Pb were all below 100 %, suggesting that the use of site-specific bioaccessibility results for these elements will yield more accurate estimation of the risk associated with oral bioavailability for sites where soil ingestion is the major contributor of human health risk.


Subject(s)
Metals, Heavy/analysis , Soil/chemistry , Biological Availability , Canada , Elements , Environmental Monitoring , Humans , Metals, Heavy/pharmacokinetics
8.
Environ Monit Assess ; 189(6): 260, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28488225

ABSTRACT

To assess the potential risk associated with incidental ingestion of metal contaminants in soils from areas where most of the commercial activities are concentrated in Kumasi, Ghana, total and bioaccessible concentrations of metals were determined in surface soil samples. Arsenic, Cr, Cu, Pb, and Zn in some of the samples exceeded international environmental soil quality guidelines. The use of geoaccumulation and enrichment factor indices also indicated high contamination in select areas of the commercial hub. Multivariate analyses of the data suggested that As, Cr, Cu, Ni, Pb, and Zn were mainly derived from anthropogenic sources whereas Al, Cd, Hg, and Fe were attributable to either soil parent materials or atmospheric deposition. Based on the total metal concentrations, the risk associated with exposure to metals in the contaminated soils was found to be high; the hazard quotient based on the mean concentration for a child receptor was greater than 1 for As, Cr, and Pb. Metal bioaccessibility was variable; decreasing in the order Zn (73 ± 15%) > Pb (62 ± 16%) > Cu (47 ± 14%) > Co (28 ± 11%) > Ni (24 ± 11%) > As (14 ± 13%) > Cr (2.8 ± 2.6%). Incorporation of the bioaccessibility data in the risk characterization resulted in hazard quotients of less than 1 indicating that the general risk associated with incidental ingestion of metals in the soils for both children and adults is low except for the contaminated hotspots. Lead and As contributed most to the overall risk.


Subject(s)
Environmental Exposure/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Adult , Arsenic/analysis , Child , Environmental Exposure/statistics & numerical data , Environmental Monitoring/methods , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Ghana , Humans , Multivariate Analysis , Soil
9.
Article in English | MEDLINE | ID: mdl-38329200

ABSTRACT

In this study, we assessed the suitability of using a standard reference material (SRM) other than National Institute of Standards and Technology (NIST) 2710a or NIST 2711a in USEPA Method 1340 to determine arsenic (As) and lead (Pb) in vitro bioaccessibility (IVBA) and the capabilities of Canadian-based laboratories to perform the method. Five laboratories participated in an initial round robin study and analyzed NIST 2710a, NIST 2711a, BGS119, and Enviromat SS-2. Intra- and inter-laboratory variability were generally acceptable with percentage relative standard deviations (RSD) of less than 20%. The mean total As and Pb concentrations obtained for BGS119 (332 and 936 mg/kg, respectively) and the mean IVBA values (As = 14.3% and Pb = 78.1%) suggested it may be a suitable and acceptable SRM, whereas the concentration of As in Enviromat SS-2 as received (3.2 mg/kg) was deemed too low. Ten soil samples from sites with varying land use were analyzed in a follow-up round robin study using the modified IVBA method that included BGS119 as SRM. The concentrations of As and Pb in the IVBA extracts reported by the participating laboratories were comparable. The mean As IVBA values for the field-collected samples ranged from 0.1% to 56.4%; for Pb, they ranged from 7.0% to 121%. The lowest IVBA values were measured in mine site samples; the highest values were associated with smelter-affected soils. The low IVBA values correlated with high iron content. Intra- and interlaboratory reproducibility were acceptable (RSD < 30%). Based on the findings of the study, laboratories can use the modified method to provide reproducible and comparable As and Pb IVBA data. The use of BGS119 as an alternative SRM to assess contaminated sites in the province of British Columbia for regulatory purposes is recommended, as it is representative of As and Pb concentrations in contaminated soils in British Columbia. Integr Environ Assess Manag 2024;00:1-10. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

10.
Article in English | MEDLINE | ID: mdl-23442112

ABSTRACT

In vitro gastrointestinal (GI) microbial activity in the colon compartment facilitates the arsenic release from soils into simulated GI fluids. Consequentially, it is possible that in vitro models that neglect to include microbial activity underestimate arsenic bioaccessibility when calculating oral exposure. However, the toxicological relevance of increased arsenic release due to microbial activity is contingent upon the subsequent absorption of arsenic solubilized in the GI lumen. The objectives of this research are to: (1) assess whether microbes in the in vitro small intestine affect arsenic solubilization from soils, (2) determine whether differences in the GI microbial community result in differences in the oral bioavailability of soil-borne arsenic. In vitro GI microbial activity in the distal small intestine increased arsenic release from soils; however, these effects were unlikely to be relevant since they were transient and demonstrated small effect sizes. In vivo arsenic absorption for juvenile swine was unaffected by antibiotic treatment. Therefore, it appears that microbial effects on arsenic release do not result in increased arsenic bioavailability. However, it remains to be seen whether the results for the limited set of soils described herein can be extrapolated to arsenic contaminated sites in general.


Subject(s)
Arsenic/pharmacokinetics , Gastrointestinal Tract/microbiology , Soil Pollutants/pharmacokinetics , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Arsenic/urine , Biological Availability , Cluster Analysis , Computer Simulation , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Humans , Hydrogen-Ion Concentration , Male , Models, Biological , Soil Pollutants/urine , Swine
11.
Article in English | MEDLINE | ID: mdl-23442115

ABSTRACT

Bioaccessibility is a measurement of a substance's solubility in the human gastro-intestinal system, and is often used in the risk assessment of soils. The present study was designed to determine the variability among laboratories using different methods to measure the bioaccessibility of 24 inorganic contaminants in one standardized soil sample, the standard reference material NIST 2710. Fourteen laboratories used a total of 17 bioaccessibility extraction methods. The variability between methods was assessed by calculating the reproducibility relative standard deviations (RSDs), where reproducibility is the sum of within-laboratory and between-laboratory variability. Whereas within-laboratory repeatability was usually better than (<) 15% for most elements, reproducibility RSDs were much higher, indicating more variability, although for many elements they were comparable to typical uncertainties (e.g., 30% in commercial laboratories). For five trace elements of interest, reproducibility RSDs were: arsenic (As), 22-44%; cadmium (Cd), 11-41%; Cu, 15-30%; lead (Pb), 45-83%; and Zn, 18-56%. Only one method variable, pH, was found to correlate significantly with bioaccessibility for aluminum (Al), Cd, copper (Cu), manganese (Mn), Pb and zinc (Zn) but other method variables could not be examined systematically because of the study design. When bioaccessibility results were directly compared with bioavailability results for As (swine and mouse) and Pb (swine), four methods returned results within uncertainty ranges for both elements: two that were defined as simpler (gastric phase only, limited chemicals) and two were more complex (gastric + intestinal phases, with a mixture of chemicals).


Subject(s)
Environmental Monitoring/methods , Environmental Monitoring/standards , Laboratories , Models, Biological , Soil Pollutants , Gastrointestinal Tract/metabolism , Humans , Laboratories/standards , Reference Standards , Reproducibility of Results , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , United States , United States Government Agencies
12.
Heliyon ; 9(3): e13174, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36873498

ABSTRACT

Food additives are used to enhance freshness, safety, appearance, flavour, and texture of food. Depending on the absorbed dose, exposure method, and length of exposure, heavy metals in diet may have a negative impact on human health. The X-Ray Fluorescence (XRF) Analyzer from Niton Thermo Scientific (Mobile Test S, NDTr-XL3t-86956, com 24) was used in this work to measure the heavy metal content in saltpetre, a food additive that mostly contains potassium nitrate. The average essential metal concentrations in the samples were determined to be 27044.27 ± 10905.18 mg kg-1, 24521.10 ± 6564.28 mg kg-1, 2418.33 ± 461.50 mg kg-1, and 4.615 ± 3.59 mg kg-1 for Ca, K, Fe and Zn respectively. Toxic metals (As, Pb) were present in the saltpetre samples at 4.13 ± 2.47 mg kg-1 and 2.11 ± 1.87 mg kg-1 average concentrations. No traces of mercury or cadmium were detected. Studies on exposure, health risks, and bio-accessibility identified arsenic as a significant risk factor for potential illnesses. The need to monitor heavy metal content of saltpetre and any potential health effects on consumers is brought to light by this study.

13.
Toxicol Rep ; 11: 261-269, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752909

ABSTRACT

Rapid urbanization and uncontrolled industrial activities in developing countries have raised concerns about potentially toxic metal contamination of the environment. This study assessed the levels of potentially toxic elements in soil and airborne particulate matter in the Suame and Asafo areas in the Kumasi metropolis, characterized by a high concentration of auto mechanic workshops and residential settlements. X-ray fluorescence analysis and inductively coupled plasma-mass spectrometry were used to determine the metal concentrations in the samples. The results showed high concentrations of potentially toxic elements in the soil and air samples, indicating contamination from automotive activities. Metals such as Co, Ni, Pb, and Zn were found to be present at concentrations (13.42-6101.58 mg/kg and 14.15-11.74 mg/kg for Suame and Asafo respectively) that pose potential health risks to exposed populations. Mathematical models such as pollution indices were used to assess the extent of contamination and determine the potential sources of the metals - the automotive repairs. The findings highlight the urgent need for environmental management and remediation strategies to mitigate the health risks of exposure to potentially toxic elements in the Kumasi metropolis automotive hub.

14.
J Health Pollut ; 9(22): 190602, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31259078

ABSTRACT

BACKGROUND: Anthropogenic activities such as artisanal mining pose a major environmental health concern due to the potential for discharge of toxic metals into the environment. OBJECTIVES: To determine the distribution and pollution patterns of arsenic (As), iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), copper (Cu) and zinc (Zn) in the topsoil of a mining community in Ghana, along with potential human health risks and in vitro bioaccessibility. METHODS: Concentrations of metals were determined using X-ray fluorescence techniques and validated using inductively coupled plasma-mass spectrometry. RESULTS: Concentrations of the metals in topsoil were in the order of magnitude of Cu (31.38 mg/kg) < Ni (45.39 mg/kg) < As (59.66 mg/kg) < Cr (92.87 mg/kg) < Zn (106.98 mg/kg) < Mn (1195.49 mg/kg) < Fe (30061.02 mg/kg). Geo-statistical and multivariate analyses based on hazard indices including contamination, ecological risks, geo-accumulation, and pollution load suggest that the topsoils are contaminated in the study area. The potential ecological risk index (PERI) showed high ecological risk effects (PERI=269.09), whereas the hazard index (1×10-7) and carcinogenic risk index (1×10-5) indicated low human health risks. Elevated levels of As, Cr, Ni, and Zn were found to emanate from anthropogenic origins, whereas Fe, Mn, and Cu levels were attributed mainly to geological and atmospheric depositions. Physicochemical parameters (pH, electrical conductivity and total organic carbon) showed weak positive correlations to the metal concentrations. Elemental bioaccessibility was variable, decreasing in the order of Mn (35± 2.9%) > Cu (29± 2.6%) > Ni (22± 1.3%) > As (9± 0.5%) > Cr (4± 0.6%) > Fe (2± 0.4%). CONCLUSIONS: Incorporation of in-vitro bioaccessibility into the risk characterization models resulted in a hazard index of less than 1, implying low human health risks. However, due to accumulation effects of the metals, regular monitoring is required. COMPETING INTERESTS: The authors declare no competing financial interests.

15.
Toxicol Rep ; 3: 644-651, 2016.
Article in English | MEDLINE | ID: mdl-28959588

ABSTRACT

Geophagia is the craving for non-food substances and commonly practiced among pregnant women and children. Consumption of geophagic clay samples can have serious implications on the health of the consumers as a result of the presence of toxic metals such as Pb, As, Hg and Cd. This study sought to determine the levels of heavy metals in the studied geophagic clay samples and to determine the potential risks of heavy metals as cumulative carcinogenic and non-carcinogenic risks to the health of the consumers via oral (ingestion) and dermal exposure routes. A total of thirty (30) white clay samples were analysed using Niton Thermo scientific XRF Analyser (Mobile Test S, NDTr-XL3t-86956, com 24). The clay samples were found to contain essential elements such as Ca, Fe, K and Zn as well as toxic metals such as As and Pb. There were isolated cases of the presence of Hg and all samples had Cd levels below detection. Health risk indices such as hazard quotient and cancer risk were calculated and the results indicated that consumers are likely to suffer from cancer through ingestion of geophagic clay. Bioaccessibility studies were done on zinc and it did not indicate any potential toxicity due to zincs essential nature. The levels of heavy metals in some of the geophagic clay consumed by some residents in the Kumasi were high compared to the Permitted Maximum Tolerable Daily Intake (PMTDI) by (WHO/FAO) and may pose potential health threat over time.

16.
Chemosphere ; 134: 544-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25600322

ABSTRACT

An in vitro gastrointestinal model was used to explore the role of solid-liquid separation method on the bioaccessibility of trace elements in a smelter-impacted soil (NIST-2711) from Helena, MT and a mine overburden from an open-pit gold and silver mine in Mount Nansen, YK (YK-OVB). Separation methods studied included centrifugation (5,000 g, 12,000 g), syringe microfiltration (0.45 µm), and ultrafiltration (1,000 kDa, 50 kDa, 30 kDa, 10 kDa, 3 kDa). Results indicated that the use of syringe microfiltration generally yields the same bioaccessibility as the use of centrifugation and that the speed of centrifugation does not typically affect metal bioaccessibility. However, ultrafiltration consistently yields a significantly lower bioaccessibility than the use of centrifugation and syringe microfiltration. There are rarely any differences between bioaccessibility estimates generated using a low-resistance (1,000 kDa) and a high-resistance (3 kDa) ultrafiltration membrane; therefore, under the in vitro gastrointestinal conditions modeled herein, negligible quantities of trace elements are complexed to small molecules between 3 and 1,000 kDa. The primary exceptions to these trends were observed for Pb in NIST-2711 (5,000 g>12,000 g>0.45 µm>ultrafiltration) and for Tl in NIST-2711 and YK-OVB (5000 g∼12,000 g>0.45 µm>ultrafiltration). These results provide valuable information to researchers attempting to expand the use of in vitro bioaccessibility beyond soil Pb and As.


Subject(s)
Environmental Monitoring/methods , Metals/metabolism , Soil Pollutants/metabolism , Biological Availability , Gastrointestinal Tract/metabolism , Humans , Metals/pharmacokinetics , Models, Theoretical , Soil Pollutants/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL