Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834818

ABSTRACT

CBL is rapidly phosphorylated upon insulin receptor activation. Mice whole body CBL depletion improved insulin sensitivity and glucose clearance; however, the precise mechanisms remain unknown. We depleted either CBL or its associated protein SORBS1/CAP independently in myocytes and assessed mitochondrial function and metabolism compared to control cells. CBL- and CAP-depleted cells showed increased mitochondrial mass with greater proton leak. Mitochondrial respiratory complex I activity and assembly into respirasomes were reduced. Proteome profiling revealed alterations in proteins involved in glycolysis and fatty acid degradation. Our findings demonstrate CBL/CAP pathway couples insulin signaling to efficient mitochondrial respiratory function and metabolism in muscle.


Subject(s)
Insulin Resistance , Proto-Oncogene Proteins c-cbl , Animals , Mice , Energy Metabolism , Insulin/metabolism , Mitochondria/metabolism , Mitochondria, Muscle/metabolism , Muscle Cells/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Cell Respiration
2.
BMC Genomics ; 22(1): 824, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34781893

ABSTRACT

BACKGROUND: Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all fish are transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype. Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill Na+, K + -ATPase activity), growth (plasma IGF-I, and liver igf1, igfbp1b, ghr1 and ctsl) and stress (plasma cortisol) were measured using targeted approaches. RESULTS: No differences in Gill Na+, K + -ATPase activity and plasma cortisol were detected between the two groups. However, a significant downregulation in plasma IGF-I and liver igf1 transcription pointed at this growth factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a characteristic lipid class associated with oxidative stress, in GS phenotype. CONCLUSION: While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this study point towards a nutritional deficiency as an underlying driver of this phenotype.


Subject(s)
Oncorhynchus mykiss , Animals , Chromatography, Liquid , Endoplasmic Reticulum Stress , Growth Disorders , Oncorhynchus mykiss/genetics , Seawater , Tandem Mass Spectrometry
3.
Cell Physiol Biochem ; 55(2): 206-221, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33914444

ABSTRACT

BACKGROUND/AIMS: The use of novel cryo-additive agents to increase cell viability post-cryopreservation is paramount to improve future cell based-therapy treatments. We aimed to establish the Human Leukemia (HL-60) cells lipidomic and biological patterns when cryo-preserved in DMSO alone and with 300 µM Nigerose (Nig), 200 µM Salidroside (Sal) or a combination of Nig (150 µM) and Sal (100 µM). METHODS: HL-60 cells were pre-incubated with Nig/Sal prior, during and post cryopreservation, and subjected to global lipidomic analysis. Malondialdeyhde (MDA), released lactate dehydrogenase (LDH) and reactive oxygen scavenger (ROS) measurements were also carried out to evaluate levels of lipid peroxidation and cytotoxicity. RESULTS: Cryopreserving HL-60 cells in DMSO with Nig and Sal provided optimal protection against unsaturated fatty acid oxidation. Post-thaw, cellular phospholipids and mitochondrial cardiolipins were increased by Nig/Sal as the ratio of unsaturated to saturated fatty acids 2.08 +/- 0.03 and 0.95 +/- 0.09 folds respectively in comparison to cells cryopreserved in DMSO alone (0.49 +/- 0.05 and 0.86 +/- 0.10 folds). HL-60 lipid peroxidation levels in the presence of DMSO + Nig and Sal combined were significantly reduced relative to pre-cryopreservation levels (10.91 +/- 2.13 nmole) compared to DMSO (17.1 +/- 3.96 nmole). DMSO + Nig/Sal combined also significantly reduced cell cytotoxicity post-thaw (0.0128 +/- 0.00182 mU/mL) in comparison to DMSO (0.0164 +/- 0.00126 mU/mL). The combination of Nig/Sal also reduced significantly ROS levels to the levels of prior cryopreservation of HL-60. CONCLUSION: Overall, the establishment of the cryopreserved HL-60 cells lipidomic and the corresponding biological profiles showed an improved cryo-formulation in the presence of DMSO with the Nig/Sal combination by protecting the, mitochondrial inner membrane, unsaturated fatty acid components (i. e. Cardiolipins) and total phospholipids.


Subject(s)
Disaccharides/chemistry , Leukemia/metabolism , Mitochondria/metabolism , Cardiolipins/metabolism , Cell Survival/drug effects , Cryopreservation , Dimethyl Sulfoxide/pharmacology , Disaccharides/pharmacology , Glucosides/pharmacology , HL-60 Cells , Humans , Lipid Peroxidation/drug effects , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Phenols/pharmacology
4.
Acta Neuropathol ; 142(6): 961-984, 2021 12.
Article in English | MEDLINE | ID: mdl-34514546

ABSTRACT

Mutations in glucocerebrosidase (GBA) are the most prevalent genetic risk factor for Lewy body disorders (LBD)-collectively Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Despite this genetic association, it remains unclear how GBA mutations increase susceptibility to develop LBD. We investigated relationships between LBD-specific glucocerebrosidase deficits, GBA-related pathways, and α-synuclein levels in brain tissue from LBD and controls, with and without GBA mutations. We show that LBD is characterised by altered sphingolipid metabolism with prominent elevation of ceramide species, regardless of GBA mutations. Since extracellular vesicles (EV) could be involved in LBD pathogenesis by spreading disease-linked lipids and proteins, we investigated EV derived from post-mortem cerebrospinal fluid (CSF) and brain tissue from GBA mutation carriers and non-carriers. EV purified from LBD CSF and frontal cortex were heavily loaded with ceramides and neurodegeneration-linked proteins including alpha-synuclein and tau. Our in vitro studies demonstrate that LBD EV constitute a "pathological package" capable of inducing aggregation of wild-type alpha-synuclein, mediated through a combination of alpha-synuclein-ceramide interaction and the presence of pathological forms of alpha-synuclein. Together, our findings indicate that abnormalities in ceramide metabolism are a feature of LBD, constituting a promising source of biomarkers, and that GBA mutations likely accelerate the pathological process occurring in sporadic LBD through endolysosomal deficiency.


Subject(s)
Ceramides/metabolism , Extracellular Vesicles/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , alpha-Synuclein/metabolism , Glucosylceramidase/genetics , Humans , Mutation , Parkinsonian Disorders/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism
5.
Appl Environ Microbiol ; 85(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30367006

ABSTRACT

Acylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by the N-acylation of the amino acid, and this is followed by subsequent O-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced in Bacteroides thetaiotaomicron We, and others, have previously reported the identification of a gene, named glsB in this study, that encodes an N-acyltransferase activity responsible for the production of a monoacylated glycine called N-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of the Bacteroidales genomes sequenced so far, the glsB gene is located immediately downstream from a gene, named glsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression of glsB and glsA results in the production of GL in Escherichia coli We constructed a deletion mutant of the glsB gene in B. thetaiotaomicron, and we confirm that glsB is required for the production of GL in B. thetaiotaomicron Moreover, we show that glsB is important for the ability of B. thetaiotaomicron to adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacterium B. thetaiotaomicronIMPORTANCE The gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from the Bacteroidales, an order that includes Bacteroides and Prevotella In this study, we have identified an acylated amino acid, called glycine lipid, produced by Bacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation of B. thetaiotaomicron to a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut by B. thetaiotaomicron This work identifies glycine lipids as an important fitness determinant in B. thetaiotaomicron and therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.


Subject(s)
Bacteroides thetaiotaomicron/growth & development , Genetic Fitness , Glycine/biosynthesis , Lipids/biosynthesis , Animals , Bacteroides thetaiotaomicron/genetics , Female , Germ-Free Life , Lipid Metabolism , Mice , Mice, Inbred C57BL
6.
Am J Physiol Endocrinol Metab ; 314(6): E605-E619, 2018 06 01.
Article in English | MEDLINE | ID: mdl-28655718

ABSTRACT

In striated muscle, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have differential effects on the metabolism of glucose and differential effects on the metabolism of protein. We have shown that, despite similar incorporation, treatment of C2C12 myotubes (CM) with EPA but not DHA improves glucose uptake and protein accretion. We hypothesized that these differential effects of EPA and DHA may be due to divergent shifts in lipidomic profiles leading to altered proteomic profiles. We therefore carried out an assessment of the impact of treating CM with EPA and DHA on lipidomic and proteomic profiles. Fatty acid methyl esters (FAME) analysis revealed that both EPA and DHA led to similar but substantials changes in fatty acid profiles with the exception of arachidonic acid, which was decreased only by DHA, and docosapentanoic acid (DPA), which was increased only by EPA treatment. Global lipidomic analysis showed that EPA and DHA induced large alterations in the cellular lipid profiles and in particular, the phospholipid classes. Subsequent targeted analysis confirmed that the most differentially regulated species were phosphatidylcholines and phosphatidylethanolamines containing long-chain fatty acids with five (EPA treatment) or six (DHA treatment) double bonds. As these are typically membrane-associated lipid species we hypothesized that these treatments differentially altered the membrane-associated proteome. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics of the membrane fraction revealed significant divergence in the effects of EPA and DHA on the membrane-associated proteome. We conclude that the EPA-specific increase in polyunsaturated long-chain fatty acids in the phospholipid fraction is associated with an altered membrane-associated proteome and these may be critical events in the metabolic remodeling induced by EPA treatment.


Subject(s)
Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Glucose/metabolism , Lipid Metabolism/drug effects , Membrane Proteins/drug effects , Muscle, Skeletal/drug effects , Proteome/drug effects , Animals , Carbohydrate Metabolism/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Eicosapentaenoic Acid/analogs & derivatives , Fatty Acids/metabolism , Membrane Proteins/metabolism , Mice , Muscle, Skeletal/metabolism , Proteome/metabolism , Triglycerides/metabolism
7.
Hum Mol Genet ; 25(16): 3432-3445, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27378698

ABSTRACT

Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD.


Subject(s)
Glucosylceramidase/genetics , Neurons/metabolism , Parkinson Disease/genetics , alpha-Synuclein/genetics , rab GTP-Binding Proteins/genetics , Animals , Autophagy/genetics , Brain/metabolism , Brain/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Gaucher Disease/genetics , Gaucher Disease/pathology , Glucosylceramidase/metabolism , Humans , Lysosomes/genetics , Lysosomes/metabolism , Mice , Mutation , Neurons/pathology , Parkinson Disease/pathology , rab7 GTP-Binding Proteins
8.
Thorax ; 72(10): 928-936, 2017 10.
Article in English | MEDLINE | ID: mdl-28469031

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an often fatal neutrophil-dominant lung disease. Although influenced by multiple proinflammatory mediators, identification of suitable therapeutic candidates remains elusive. We aimed to delineate the presence of mitochondrial formylated peptides in ARDS and characterise the functional importance of formyl peptide receptor 1 (FPR1) signalling in sterile lung inflammation. METHODS: Mitochondrial formylated peptides were identified in bronchoalveolar lavage fluid (BALF) and serum of patients with ARDS by liquid chromatography-tandem mass spectrometry. In vitro, human neutrophils were stimulated with mitochondrial formylated peptides and their effects assessed by flow cytometry and chemotaxis assay. Mouse lung injury was induced by mitochondrial formylated peptides or hydrochloric acid. Bone marrow chimeras determined the contribution of myeloid and parenchymal FPR1 to sterile lung inflammation. RESULTS: Mitochondrial formylated peptides were elevated in BALF and serum from patients with ARDS. These peptides drove neutrophil activation and chemotaxis through FPR1-dependent mechanisms in vitro and in vivo. In mouse lung injury, inflammation was attenuated in Fpr1-/- mice, effects recapitulated by a pharmacological FPR1 antagonist even when administered after the onset of injury. FPR1 expression was present in alveolar epithelium and chimeric mice demonstrated that both myeloid and parenchymal FPR1 contributed to lung inflammation. CONCLUSIONS: We provide the first definitive evidence of mitochondrial formylated peptides in human disease and demonstrate them to be elevated in ARDS and important in a mouse model of lung injury. This work reveals mitochondrial formylated peptide FPR1 signalling as a key driver of sterile acute lung injury and a potential therapeutic target in ARDS.


Subject(s)
Receptors, Formyl Peptide/immunology , Respiratory Distress Syndrome/immunology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Chemotaxis, Leukocyte/immunology , Chromatography, High Pressure Liquid , Disease Models, Animal , Flow Cytometry , Humans , Mice , Mitochondria/immunology , Neutrophil Activation/immunology , Neutrophils/immunology , Tandem Mass Spectrometry
9.
Proteomics ; 16(9): 1398-406, 2016 05.
Article in English | MEDLINE | ID: mdl-26929125

ABSTRACT

The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates.


Subject(s)
Isotope Labeling/methods , Leucine/metabolism , Myocardium/metabolism , Proteome/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Biological Transport , Food, Formulated , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Molecular Sequence Annotation , Proteome/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
10.
Diabetologia ; 59(7): 1513-1523, 2016 07.
Article in English | MEDLINE | ID: mdl-27138913

ABSTRACT

AIMS: ß-Secretase 1 (BACE1) is a key enzyme in Alzheimer's disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4). METHODS: Glucose homeostasis and adiposity were determined by glucose tolerance tests and EchoMRI, lipid species were measured by quantitative lipidomics, and biochemical and molecular alterations were assessed by western blotting, quantitative PCR and ELISAs. Glucose uptake in the brain and upper body was measured via (18)FDG-PET imaging. RESULTS: Physiological and molecular analyses demonstrated that centrally expressed human BACE1 induced systemic glucose intolerance in mice from 4 months of age onward, alongside a fatty liver phenotype and impaired hepatic glycogen storage. This diabetic phenotype was associated with hypothalamic pathology, i.e. deregulation of the melanocortin system, and advanced endoplasmic reticulum (ER) stress indicated by elevated central C/EBP homologous protein (CHOP) signalling and hyperphosphorylation of its regulator eukaryotic translation initiation factor 2α (eIF2α). In vivo (18)FDG-PET imaging further confirmed brain glucose hypometabolism in these mice; this corresponded with altered neuronal insulin-related signalling, enhanced protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4) levels, along with upregulation of the ribosomal protein and lipid translation machinery. Increased forebrain and plasma lipid accumulation (i.e. ceramides, triacylglycerols, phospholipids) was identified via lipidomics analysis. CONCLUSIONS/INTERPRETATION: Our data reveal that neuronal BACE1 is a key regulator of metabolic homeostasis and provide a potential mechanism for the high prevalence of metabolic disturbance in Alzheimer's disease.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Neurons/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Disease Models, Animal , Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/physiopathology , Homeostasis , Humans , Mice , Obesity/genetics , Obesity/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
11.
Biochem Soc Trans ; 42(4): 928-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25109981

ABSTRACT

Atherothrombotic disease is a well-recognized complication of diabetes and is a major contributor to the high morbidity and mortality associated with diabetes. Although there is substantial evidence linking diabetes with cardiovascular disease, the specific effect of hyper- (or hypo-) glycaemia is less well understood. The present review focuses on the impact that glycaemic dysregulation has on respiratory function and ROS (reactive oxygen species) generation in the endothelial cells that are critical in preventing several key steps in the atherothrombotic process. Endothelial cells are particularly susceptible to ROS-mediated dysfunction not only because of reduced cell viability and increased senescence, but also because one of the major endothelium-derived factors that help to protect against atherosclerosis, nitric oxide, is rapidly deactivated by superoxide radicals.


Subject(s)
Cardiovascular Diseases/metabolism , Diabetes Complications/metabolism , Endothelium, Vascular/metabolism , Oxidative Stress/physiology , Animals , Cellular Senescence/physiology , Humans , Reactive Oxygen Species/metabolism
12.
J Proteome Res ; 12(11): 5246-52, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24047415

ABSTRACT

Fish have to respond to a range of natural and man-made environmental stressors, which can lead to molecular changes within their tissues. Many studies focused on environmental stress in fish have examined the change in protein abundance or mRNA level. However, it is well-known that there is a disconnect between mRNA and protein expression. In order to bridge this gap, protein turnover must also be considered. We have developed an experimental strategy to determine the synthesis rates of individual proteins in the tissues of fish on a proteome-wide scale. This approach has been applied to the common carp ( Cyprinus carpio ), a key model species for investigating environmentally induced physiological plasticity. We have calculated the rates of protein synthesis for over a thousand individual proteins from the skeletal muscle and liver of carp. The median synthesis rate of proteins from liver was higher than that of skeletal muscle. The analysis further revealed that the same protein can have a different rate of synthesis depending on the tissue type. Our strategy permits a full investigation of proteome dynamics in fish and will have relevance to the fields of integrative biology and ecotoxicology.


Subject(s)
Carps/genetics , Environment , Models, Animal , Protein Biosynthesis/physiology , Proteome , Proteomics/methods , Stress, Physiological/genetics , Animals , Carps/metabolism , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation/genetics , Liver/metabolism , Muscle, Skeletal/metabolism , Protein Biosynthesis/genetics , Tandem Mass Spectrometry
13.
Immunogenetics ; 65(1): 1-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23053058

ABSTRACT

Schizophrenia is a complex mental disorder with unknown aetiology. Both candidate gene and genome-wide association (GWA) studies suggest that the human leukocyte antigen (HLA) system may play a part in development of the illness, but the causal HLA variant(s) remain(s) unclear. Previous studies showed that the DRB1*0101 and DRB1*13 alleles might be associated with a high risk of schizophrenia. Therefore, the present study was undertaken to test their association with the disease by genotyping seven DRB1-tagging single nucleotide polymorphisms (SNPs) in a British population. The results showed that, of the previously reported variants that were associated with schizophrenia, the DRB1*1303 allele was the only one marginally associated with a protective effect on the illness in our sample set (χ² = 4.138, P = 0.042, odds ratio (OR) = 0.42, 95 % confidence interval (CI) 0.27-0.66). Interestingly, a significant association was found for rs424232 (χ² = 9.404, P = 0.002, OR = 0.69, 95 % CI 0.54-0.88), which is a tag SNP for the DRB1*1303 allele and located near to the NOTCH4 gene that is a schizophrenia susceptibility locus confirmed by GWA studies. Analysis with the Haploview program demonstrated that rs424232 was in complete linkage disequilibrium with rs3130297 and rs3131296 present in the NOTCH4 locus. While we have failed to confirm association of the candidate alleles in the DRB1 gene with a high risk of schizophrenia, the present work suggests that the association signal detected in the HLA class II locus may extend a relatively long distance, and more work is needed in order to identify the true causal variants within this region or nearby.


Subject(s)
HLA-DRB1 Chains/genetics , Proto-Oncogene Proteins/genetics , Receptors, Notch/genetics , Schizophrenia/genetics , Alleles , Base Sequence , Case-Control Studies , England , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide , Receptor, Notch4
14.
Article in English | MEDLINE | ID: mdl-37913700

ABSTRACT

Blue mussels (Mytilus sp.) are an economically important species for European aquaculture. Their importance as a food source is expected to increase in the coming net-zero society due to their low environmental footprint; however, their production is affected by anthropogenic stressors and climate change. During reproduction, lipids are key molecules for mussels as they are the main source of energy on which newly hatched embryos depend in the first days of their development. In this work, blue mussels of different origins are analysed, focusing on the differences in lipid composition between the ovary (BMO) and the testis (BMT). The lipidome of blue mussel gonads (BMG) is studied here by combining traditional lipid profiling methods, such as fatty acid and lipid class analysis, with untargeted liquid chromatography-mass spectrometry (LC-MS) lipidomics. The approach used here enabled the identification of 770 lipid molecules from 23 different lipid classes in BMG. BMT, which consists of billions of spermatocytes, had greater amounts of cell membrane and membrane lipid components such as FA18:0, C20 polyunsaturated fatty acids (PUFA), free sterols (ST), ceramide phosphoethanolamines (CerPE), ceramide aminoethylphosphonates (CAEP), cardiolipins (CL), glycerophosphocholines (PC), glycerophosphoethanolamines (PE) and glycerophosphoserines (PS). In BMO, saturated fatty acids (FA14:0 and FA16:0), monounsaturated fatty acids (MUFA) and other storage components such as C18-PUFA accumulated in triradylglycerolipids (TG) and alkyldiacylglycerols (neutral plasmalogens, TG O-), which, together with terpenes, wax esters and cholesterol esters, make up most of oocytes yolk reserves. BMO also had higher levels of ceramides (Cer) and generally alkyl/alkenyl glycerophospholipids (mainly plasmanyl/plasmenyl PC), suggesting a role for these lipids in vitellogenesis. Non-methylene interrupted dienoic fatty acids (NMID FA), typically found in plasmalogens, were the only membrane-forming PUFA predominantly detected in BMO. The results of this study are of great importance for clarifying the lipid composition of BMG and provide an important basis for future studies on the reproductive physiology of these organisms.


Subject(s)
Mytilus edulis , Mytilus , Male , Female , Animals , Lipidomics , Plasmalogens , Sex Characteristics , Fatty Acids , Fatty Acids, Unsaturated , Gonads , Ceramides/analysis
15.
Sci Rep ; 13(1): 3937, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894641

ABSTRACT

Fenretinide is a synthetic retinoid that can prevent obesity and improve insulin sensitivity in mice by directly altering retinol/retinoic acid homeostasis and inhibiting excess ceramide biosynthesis. We determined the effects of Fenretinide on LDLR-/- mice fed high-fat/high-cholesterol diet ± Fenretinide, a model of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Fenretinide prevented obesity, improved insulin sensitivity and completely inhibited hepatic triglyceride accumulation, ballooning and steatosis. Moreover, Fenretinide decreased the expression of hepatic genes driving NAFLD, inflammation and fibrosis e.g. Hsd17b13, Cd68 and Col1a1. The mechanisms of Fenretinide's beneficial effects in association with decreased adiposity were mediated by inhibition of ceramide synthesis, via hepatic DES1 protein, leading to increased dihydroceramide precursors. However, Fenretinide treatment in LDLR-/- mice enhanced circulating triglycerides and worsened aortic plaque formation. Interestingly, Fenretinide led to a fourfold increase in hepatic sphingomyelinase Smpd3 expression, via a retinoic acid-mediated mechanism and a further increase in circulating ceramide levels, linking induction of ceramide generation via sphingomyelin hydrolysis to a novel mechanism of increased atherosclerosis. Thus, despite beneficial metabolic effects, Fenretinide treatment may under certain circumstances enhance the development of atherosclerosis. However, targeting both DES1 and Smpd3 may be a novel, more potent therapeutic approach for the treatment of metabolic syndrome.


Subject(s)
Atherosclerosis , Fenretinide , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Ceramides/metabolism , Diet, High-Fat , Fenretinide/pharmacology , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Tretinoin/pharmacology , Receptors, LDL/metabolism
16.
J Inflamm (Lond) ; 19(1): 12, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050729

ABSTRACT

BACKGROUND: Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation. RESULTS: This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype. CONCLUSIONS: Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.

17.
Expert Rev Proteomics ; 8(3): 325-34, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21679114

ABSTRACT

Proteomics is a rapidly developing discipline that seeks to understand the role of proteins in the wider biological context. In order to take a holistic view of a biological system, it is vital that we can elucidate the dynamics of the proteome. In this article, we have outlined the recent advances in experimental strategies for measuring protein synthesis and degradation on a proteome-wide scale. The application of mass spectrometry and non-mass spectrometric-based approaches in this field of research has been discussed. The article also explores the challenges associated with these types of analyses and the development of appropriate bioinformatic resources for interrogating the complex datasets that are generated.


Subject(s)
Proteomics/methods , Animals , Humans , Proteomics/trends
18.
Biochem J ; 430(3): 453-60, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20629634

ABSTRACT

SOCCs (store-operated Ca(2+) channels) are highly selective ion channels that are activated upon release of Ca(2+) from intracellular stores to regulate a multitude of diverse cellular functions. It was reported previously that Golli-BG21, a member of the MBP (myelin basic protein) family of proteins, regulates SOCE (store-operated Ca(2+) entry) in T-cells and oligodendrocyte precursor cells, but the underlying mechanism for this regulation is unknown. In the present study we have discovered that Golli can directly interact with the ER (endoplasmic reticulum) Ca(2+)-sensing protein STIM1 (stromal interaction molecule 1). Golli interacts with the C-terminal domain of STIM1 in both in vitro and in vivo binding assays and this interaction may be modulated by the intracellular Ca(2+) concentration. Golli also co-localizes with full-length STIM1 and Orai1 complexes in HeLa cells following Ca(2+) store depletion. Overexpression of Golli reduces SOCE in HeLa cells, but this inhibition is overcome by overexpressing STIM1. We therefore suggest that Golli binds to STIM1-Orai1 complexes to negatively regulate the activity of SOCCs.


Subject(s)
Calcium/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism , Transcription Factors/metabolism , Binding Sites , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Intracellular Space/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Proteins/genetics , Microscopy, Confocal , Myelin Basic Protein , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Binding , Stromal Interaction Molecule 1 , Transcription Factors/genetics , Transfection
19.
Front Physiol ; 12: 696275, 2021.
Article in English | MEDLINE | ID: mdl-34276415

ABSTRACT

Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm's metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.

20.
Behav Brain Res ; 383: 112515, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32006564

ABSTRACT

Environmental Enrichment leads to a significant improvement in long-term performance across a range of cognitive functions in mammals and it has been shown to produce an increased synaptic density and neurogenesis. Nevertheless it is still an open question as to whether some key aspects of spatial learning & memory and procedural learning might be embodied by different molecular pathways to those of social cognition. Associated with synaptic changes and potentially underlying conditions, the Ras-ERK pathway has been proposed to be the primary mediator of in vivo adaptations to environmental enrichment, acting via the downstream Ras-ERK signalling kinase MSK1 and the transcription factor CREB. Herein, we show that valence of environmental stimulation increased social competition and that this is associated with a specific proteomic signature in the frontal lobe but notably not in the hippocampus. Specifically, we show that altering the valence of environmental stimuli affected the level of social competition, with mice from negatively enriched environments winning significantly more encounters-even though mice from positive were bigger and should display dominance. This behavioural phenotype was accompanied by changes in the proteome of the fronto-ventral pole of the brain, with a differential increase in the relative abundance of proteins involved in the mitochondrial metabolic processes of the TCA cycle and respiratory processes. Investigation of this proteomic signature may pave the way for the elucidation of novel pathways underpinning the behavioural changes caused by negative enrichment and further out understanding of conditions whose core feature is increased social competition.


Subject(s)
Behavior, Animal , Frontal Lobe/metabolism , Housing, Animal , Mitochondria/metabolism , Social Behavior , Animals , Brain/metabolism , Cell Respiration , Citric Acid Cycle , Competitive Behavior , Hippocampus/metabolism , MAP Kinase Signaling System , Mice , Proteome/metabolism , Spatial Learning , Spatial Memory , Up-Regulation , ras Proteins
SELECTION OF CITATIONS
SEARCH DETAIL