Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Zoolog Sci ; 36(6): 490-503, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31833320

ABSTRACT

Understanding migration ecology of Eurasian wigeons (Mareca penelope) is crucial for effective population management, mitigating conflicts with human, and habitat conservation. The objectives of the present study were 1) to determine their migration patterns of Eurasian wigeons in the East Asian flyway, and 2) to identify the key breeding and stopover sites. From 2007 to 2016, a total of the 64 wigeons, which wintered in Japan, were equipped with satellite transmitters. Most Eurasian wigeons migrated to breeding sites in Russia either (a) via a continental route through China, (b) via the Kamchatka Peninsula, or (c) via Sakhalin Island. In spring, many of the Eurasian wigeons (60.98%) migrated via the continental route. In autumn, most Eurasian wigeons (57.14%) migrated through Kamchatka. These differences may be attributable to the influence of Okhotsk Sea air mass on migration decisions due to loop migration. Similarly to the migration of Mallards, Eurasian wigeons employed a "long-stay and short-travel" migration strategy. Eurasian wigeons mainly nested between latitude between 43° to 75°N. From the present findings and the published literature, Eurasian wigeons that winter in Japan are considered to migrate to Russia, China, and the United States during the breeding season, although the main breeding area is in northeastern Russia. A total of 296 important sites to Eurasian wigeons were mapped, and 118 location names with geographic coordinates, and the top five most frequently used sites were identified in each season.


Subject(s)
Animal Identification Systems , Animal Migration , Anseriformes/physiology , Seasons , Spacecraft , Animals , China , Japan , Russia
2.
Zoolog Sci ; 33(1): 63-72, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26853870

ABSTRACT

Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.


Subject(s)
Animal Identification Systems/instrumentation , Animal Migration/physiology , Anseriformes/physiology , Seasons , Spacecraft , Animal Identification Systems/methods , Animals , Japan , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL