Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nat Immunol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014161

ABSTRACT

Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.

2.
Nature ; 577(7789): 266-270, 2020 01.
Article in English | MEDLINE | ID: mdl-31827282

ABSTRACT

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Subject(s)
Histone Acetyltransferases/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Line, Tumor , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Structure, Tertiary
3.
Nature ; 560(7717): 253-257, 2018 08.
Article in English | MEDLINE | ID: mdl-30069049

ABSTRACT

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Subject(s)
Benzenesulfonates/pharmacology , Cellular Senescence/drug effects , Histone Acetyltransferases/antagonists & inhibitors , Hydrazines/pharmacology , Lymphoma/drug therapy , Lymphoma/pathology , Sulfonamides/pharmacology , Acetylation/drug effects , Animals , Benzenesulfonates/therapeutic use , Cell Proliferation/drug effects , Cells, Cultured , Drug Development , Fibroblasts , Gene Expression Regulation, Neoplastic/drug effects , Histone Acetyltransferases/deficiency , Histone Acetyltransferases/genetics , Histones/chemistry , Histones/metabolism , Hydrazines/therapeutic use , Lymphoma/enzymology , Lymphoma/genetics , Lysine/chemistry , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Sulfonamides/therapeutic use
4.
Chemistry ; 24(8): 1922-1930, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29171692

ABSTRACT

Dihydropteroate synthase (DHPS) is an enzyme of the folate biosynthesis pathway, which catalyzes the formation of 7,8-dihydropteroate (DHPt) from 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) and para-aminobenzoic acid (pABA). DHPS is the long-standing target of the sulfonamide class of antibiotics that compete with pABA. In the wake of sulfa drug resistance, targeting the structurally rigid (and more conserved) pterin site has been proposed as an alternate strategy to inhibit DHPS in wild-type and sulfa drug resistant strains. Following the work on developing pterin-site inhibitors of the adjacent enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), we now present derivatives of 8-mercaptoguanine, a fragment that binds weakly within both enzymes, and quantify sub-µm binding using surface plasmon resonance (SPR) to Escherichia coli DHPS (EcDHPS). Eleven ligand-bound EcDHPS crystal structures delineate the structure-activity relationship observed providing a structural framework for the rational development of novel, substrate-envelope-compliant DHPS inhibitors.


Subject(s)
Dihydropteroate Synthase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Guanine/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dihydropteroate Synthase/metabolism , Enzyme Inhibitors/metabolism , Escherichia coli/enzymology , Guanine/metabolism , Hydrogen Bonding , Ligands , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity , Sulfonamides/chemistry , Surface Plasmon Resonance
5.
J Biol Chem ; 291(24): 12641-12657, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27036939

ABSTRACT

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.


Subject(s)
Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Animals , Antibody Specificity/immunology , Binding Sites/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/immunology , Cells, Cultured , Crystallography, X-Ray , Epitope Mapping , HEK293 Cells , HIV Infections/immunology , HIV Infections/prevention & control , HL-60 Cells , Humans , Jurkat Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Models, Molecular , Protein Binding/immunology , Protein Domains , Receptors, CXCR4/metabolism , Single-Domain Antibodies/chemistry , Surface Plasmon Resonance
6.
J Comput Aided Mol Des ; 28(4): 347-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24532034

ABSTRACT

Tremendous gains and novel methods are often developed when people are challenged to do something new or difficult. This process is enhanced when people compete against each other-this can be seen in sport as well as in science and technology (e.g. the space race). The SAMPL challenges, like the CASP challenges, aim to challenge modellers and software developers to develop new ways of looking at molecular interactions so the community as a whole can progress in the accurate prediction of these interactions. In order for this challenge to occur, data must be supplied so the prospective test can be done. We have supplied unpublished data related to a drug discovery program run several years ago on HIV integrase for the SAMPL4 challenge. This paper describes the methods used to obtain these data and the chemistry involved.


Subject(s)
Drug Design , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV/enzymology , Computer-Aided Design , HIV Infections/drug therapy , HIV Infections/enzymology , HIV Infections/virology , HIV Integrase/chemistry , Humans , Models, Molecular , Protein Binding , Software
7.
J AOAC Int ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775648

ABSTRACT

BACKGROUND: Bovine lactoferrin is increasingly being used as an ingredient in infant formula manufacture to enhance nutritional efficacy through the provision of growth, immunoprotective and antimicrobial factors to the neonate. OBJECTIVE: To evaluate method reproducibility of AOAC 2021.07 Official First Action method for compliance with the performance requirements described in Standard Method Performance Requirement (SMPR®) 2020.005. METHOD: Eight laboratories participated in the analysis of blind-duplicate samples of seven nutritional products. Samples were diluted in buffer, and an optical biosensor immunoassay was used in a direct assay format to quantitate bovine lactoferrin by its interaction with an immobilized anti-lactoferrin antibody. Quantitation was accomplished by the external standard technique with interpolation from a 4-parameter calibration regression. RESULTS: After outliers were removed, precision as reproducibility was found to be within limits set in SMPR 2020.005 (≤ 9%) for six out of seven samples and all had acceptable HorRatR values ranging from 1.0 to 2.1. Additionally, comparison with an alternative independent Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) First Action method (heparin clean-up LC UV), showed negligible difference between results. CONCLUSIONS: The method described is suitable for the quantification of intact, undenatured bovine lactoferrin in powdered infant formulas. The SPIFAN Expert Review Panel evaluated the method and accompanying validation data from this multi-laboratory testing study in July 2023 and recommended Official Method 2021.07 for adoption as a Final Action Official Method. HIGHLIGHTS: A multi-laboratory validation study of an automated optical biosensor immunoassay for the determination of intact, undenatured bovine lactoferrin is described.

8.
Proteins ; 81(10): 1748-58, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23609990

ABSTRACT

Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid-ß (Aß) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aß peptide deposits and the details of the metal-binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aß residues 1-16 fused to the N-terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti-Aß N-terminal antibody WO2. The structure demonstrates that Aß residues 10-16, which are not in complex with the antibody, adopt a mixture of local polyproline II-helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aß (residues, 10-16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13-metal-His14 coordination in the Aß1-16 fragment implicated in Aß metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aß and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N-terminal monomer structure, in particular residues His13 and His14, and preventing Aß metal-binding-induced neurotoxicity.


Subject(s)
Amyloid beta-Peptides/chemistry , Recombinant Fusion Proteins/chemistry , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Escherichia coli , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Molecular Sequence Data , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
9.
Growth Factors ; 30(5): 310-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22856597

ABSTRACT

Ligand-mediated activation of ErbB3 and ErbB4 is implicated in the pathogenesis of several human malignancies including cancer of the ovary and melanoma. We have used the broad ErbB ligand specificity of ErbB4 to assemble and express an ErbB4 fusion protein comprising the first 497 amino acids of the mature ErbB4 ectodomain fused to the human IgG Fc constant region. The purified fusion protein, designated sErbB4.497.Fc, binds the ErbB receptor ligands betacellulin and heregulin-ß1 (HRG-ß1) with high affinity (K(D) = 130 pM), an increase in affinity of 10- to 20-fold, respectively, compared with sErbB4.615.Fc. sErbB4.497.Fc inhibited ligand-stimulated phosphorylation of epidermal growth factor receptor and ErbB2, and blocked HRG-ß1 activation of the IKB/MAP/JNK/AKT signalling pathways. sErbB4.497.Fc inhibited HRG-ß1-stimulated proliferation in MCF7 cells. In a mouse tumour xenograft model, sErbB4.497.Fc as a monotherapy modestly inhibited the growth of MDA-MB-231 breast cancer cells. sErbB4.497.Fc may be useful in an adjuvant setting in combination with conventional therapeutic agents.


Subject(s)
ErbB Receptors/metabolism , Neuregulin-1/antagonists & inhibitors , Neuregulin-1/metabolism , Receptors, Fc/metabolism , Animals , Betacellulin , Breast Neoplasms/drug therapy , CHO Cells , Cell Line , Cricetinae , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HEK293 Cells , Humans , I-kappa B Proteins/antagonists & inhibitors , I-kappa B Proteins/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , MCF-7 Cells , Melanoma/pathology , Mice , Ovarian Neoplasms/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-4 , Receptors, Fc/genetics , Receptors, Fc/therapeutic use , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/therapeutic use , Signal Transduction , Xenograft Model Antitumor Assays
10.
Biotechnol Bioeng ; 109(6): 1461-70, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22170409

ABSTRACT

Sortase-mediated protein ligation is a biological covalent conjugation system developed from the enzymatic cell wall display mechanism found in Staphylococcus aureus. This three-component system requires: (i) purified Sortase A (SrtA) enzyme; (ii) a substrate containing the LPXTG peptide recognition sequence; and (iii) an oligo-glycine acceptor molecule. We describe cloning of the single-chain antibody sc528, which binds to the extracellular domain of the epidermal growth factor receptor (EGFR), from the parental monoclonal antibody and incorporation of a LPETGG tag sequence. Utilizing recombinant SrtA, we demonstrate successful incorporation of biotin from GGG-biotin onto sc528. EGFR is an important cancer target and is over-expressed in human tumor tissues and cancer lines, such as the A431 epithelial carcinoma cells. SrtA-biotinylated sc528 specifically bound EGFR expressed on A431 cells, but not negative control lines. Similarly, when sc528 was labeled with fluorescein we observed antigen-specific labeling. The ability to introduce functionality into recombinant antibodies in a controlled, site-specific manner has applications in experimental, diagnostic, and potentially clinical settings. For example, we demonstrate addition of all three reaction components in situ within a biosensor flow cell, resulting in oriented covalent capture and presentation of sc528, and determination of precise affinities for the antibody-receptor interaction.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , ErbB Receptors/antagonists & inhibitors , Single-Chain Antibodies/metabolism , Staining and Labeling/methods , Aminoacyltransferases/genetics , Antibodies, Blocking/genetics , Antibodies, Blocking/immunology , Antibodies, Blocking/metabolism , Bacterial Proteins/genetics , Biotin/metabolism , Cell Line, Tumor , Cysteine Endopeptidases/genetics , ErbB Receptors/immunology , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
11.
J Comput Aided Mol Des ; 26(5): 497-503, 2012 May.
Article in English | MEDLINE | ID: mdl-22187139

ABSTRACT

Part of the latest SAMPL challenge was to predict how a small fragment library of 500 commercially available compounds would bind to a protein target. In order to assess the modellers' work, a reasonably comprehensive set of data was collected using a number of techniques. These included surface plasmon resonance, isothermal titration calorimetry, protein crystallization and protein crystallography. Using these techniques we could determine the kinetics of fragment binding, the energy of binding, how this affects the ability of the target to crystallize, and when the fragment did bind, the pose or orientation of binding. Both the final data set and all of the raw images have been made available to the community for scrutiny and further work. This overview sets out to give the parameters of the experiments done and what might be done differently for future studies.


Subject(s)
Benzamidines/chemistry , Immobilized Proteins/chemistry , Protein Binding , Trypsin Inhibitors/chemistry , Trypsin/chemistry , Animals , Calorimetry , Cattle , Crystallography, X-Ray , Small Molecule Libraries/chemistry , Surface Plasmon Resonance
12.
iScience ; 25(11): 105259, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36213007

ABSTRACT

The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.

13.
Proteins ; 79(4): 1306-17, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21322055

ABSTRACT

One method of laboratory- or field-based testing for anthrax is detection of Bacillus anthracis spores by high-affinity, high specificity binding reagents. From a pool of monoclonal antibodies, we selected one such candidate (A4D11) with high affinity for tBclA, a truncated version of the B. anthracis exosporium protein BclA. Kinetic analysis utilising both standard and kinetic titration on a Biacore biosensor indicated antibody affinities in the 300 pM range for recombinant tBclA, and the A4D11 antibody was also re-formatted into scFv configuration with no loss of affinity. However, assays against B. anthracis and related Bacilli species showed limited binding of intact spores as well as significant cross-reactivity between species. These results were rationalized by determination of the three-dimensional crystallographic structure of the scFv-tBclA complex. A4D11 binds the side of the tBclA trimer, contacting a face of the antigen normally packed against adjacent trimers within the exosporium structure; this inter-spore interface is highly conserved between Bacilli species. Our results indicate the difficulty of generating a high-affinity antibody to differentiate between the highly conserved spore structures of closely related species, but suggest the possibility of future structure-based antibody design for this difficult target.


Subject(s)
Antibodies, Bacterial/chemistry , Antibodies, Monoclonal/chemistry , Bacillus anthracis/immunology , Bacterial Proteins/immunology , Membrane Glycoproteins/immunology , Single-Chain Antibodies/chemistry , Amino Acid Sequence , Animals , Antibodies, Bacterial/immunology , Antibodies, Bacterial/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Bacillus anthracis/chemistry , Bacterial Proteins/metabolism , Biosensing Techniques , Crystallography, X-Ray , Hybridomas , Membrane Glycoproteins/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism
14.
Acta Crystallogr D Struct Biol ; 76(Pt 9): 889-898, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876064

ABSTRACT

Cancer is one of the leading causes of mortality in humans, and recent work has focused on the area of immuno-oncology, in which the immune system is used to specifically target cancerous cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an emerging therapeutic target in human cancers owing to its role in degrading cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING). The available structures of ENPP1 are of the mouse enzyme, and no structures are available with anything other than native nucleotides. Here, the first X-ray crystal structures of the human ENPP1 enzyme in an apo form, with bound nucleotides and with two known inhibitors are presented. The availability of these structures and a robust crystallization system will allow the development of structure-based drug-design campaigns against this attractive cancer therapeutic target.


Subject(s)
Enzyme Inhibitors , Membrane Proteins/agonists , Neoplasms/enzymology , Phosphoric Diester Hydrolases , Pyrophosphatases , Enzyme Inhibitors/chemistry , Humans , Phosphoric Diester Hydrolases/chemistry , Protein Binding , Protein Conformation , Pyrophosphatases/chemistry
15.
Anal Biochem ; 385(2): 346-57, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19073134

ABSTRACT

Antibody generation by phage display and related in vitro display technologies routinely yields large panels of clones detected in primary end-point screenings such as enzyme-linked immunosorbent assay (ELISA). However, for the development of clinical lead candidates, rapid determination of secondary characteristics such as kinetics and thermodynamics is of nearly equal importance. Surface plasmon resonance-based biosensors are ideal tools for carrying out such high-throughput secondary screenings, allowing preliminary but confident ranking and identification of lead clones. A key feature of these assays is the stable and reversible capture of antibody fragments from crude samples leading to high-resolution kinetic analysis of library outputs. Here we exploit the high-affinity interaction between the naturally occurring nuclease domain of E. coli colicin E7 (DNaseE7) and its cognate partner, the immunity protein 7 (Im7), to develop a ligand capture system suitable for accurate kinetic ranking of library clones. We demonstrate generic applicability for a range of antibody formats: scFv antibodies, diabodies, antigen binding fragments (Fabs), and shark V(NAR) single domain antibodies. The system is adaptable and reproducible, with comparable results achieved for both the Biacore T100 and ProteOn XPR36 array biosensors.


Subject(s)
Antibodies/chemistry , Biosensing Techniques/methods , Carrier Proteins/chemistry , Colicins/chemistry , Escherichia coli Proteins/chemistry , Immunoconjugates/chemistry , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , Kinetics
16.
Structure ; 15(11): 1452-66, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17997971

ABSTRACT

Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P. falciparum strains. We present cocrystal structures of two antibody-AMA1 complexes which reveal extended IgNAR CDR3 loops penetrating deep into a hydrophobic cleft on the antigen surface and contacting residues conserved across parasite species. Comparison of a series of affinity-enhancing mutations allowed dissection of their relative contributions to binding kinetics and correlation with inhibition of erythrocyte invasion. These findings provide insights into mechanisms of single-domain antibody binding, and may enable design of reagents targeting otherwise cryptic epitopes in pathogen antigens.


Subject(s)
Antibodies, Protozoan/chemistry , Antigens, Protozoan/chemistry , Immunoglobulin Variable Region/chemistry , Membrane Proteins/chemistry , Plasmodium falciparum/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Antibody Affinity , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Base Sequence , Binding Sites , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Kinetics , Malaria, Falciparum/immunology , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Peptide Library , Protein Structure, Tertiary , Protozoan Proteins/metabolism , Surface Plasmon Resonance
17.
Mol Cancer Ther ; 18(2): 335-345, 2019 02.
Article in English | MEDLINE | ID: mdl-30413648

ABSTRACT

Antibody-drug conjugates (ADC) have revolutionized the field of cancer therapy. ADCs combine the high specificity of tumor-targeting monoclonal antibodies with potent cytotoxic drugs, which cannot be used alone because of their high toxicity. Till date, all ADCs have either targeted cell membrane proteins on tumors or the tumor vasculature and microenvironment. Here, we investigate ADCs of APOMAB (DAB4, or its chimeric derivative, chDAB4), which is a mAb targeting the La/SSB protein, which is only accessible for binding in dying or dead cancer cells. We show that DAB4-labeled dead cells are phagocytosed by macrophages, and that the apoptotic/necrotic areas within lung tumor xenografts are bound by DAB4 and are infiltrated with macrophages. We show that only DAB4-ADCs with a cleavable linker and diffusible drug are effective in two lung cancer models, particularly when given after chemotherapy. These results are consistent with other recent studies showing that direct internalization of ADCs by target cells is not essential for ADC activity because the linker can be cleaved extracellularly or through other mechanisms. Rather than targeting a tumor cell type specific antigen, DAB4-ADCs have the advantage of targeting a common trait in most solid tumors: an excess of post-apoptotic, necrotic cells either adjacent to hypoxic tumor regions or distributed more generally after cytotoxic therapy. Consequently, any antitumor effects are solely the result of bystander killing, either through internalization of the dead, ADC-bound tumor cells by macrophages, or extracellular cleavage of the ADC in the tumor microenvironment.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoconjugates/administration & dosage , Lung Neoplasms/drug therapy , Macrophages/metabolism , A549 Cells , Animals , Apoptosis , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Lung Neoplasms/metabolism , Mice , Phagocytosis , RAW 264.7 Cells , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
18.
Struct Dyn ; 6(6): 064701, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768400

ABSTRACT

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment. In this study, a fragment screen with Surface Plasmon Resonance (SPR) was used to identify a highly ligand-efficient imidazole-containing compound that is bound in the WIN site. The subsequent medicinal chemistry campaign-guided by a suite of high-resolution cocrystal structures with WDR5-progressed the initial hit to a low micromolar binder. One outcome from this study is a moiety that substitutes well for the side chain of arginine; a tripeptide containing one such substitution was resolved in a high resolution structure (1.5 Å) with a binding mode analogous to the native tripeptide. SPR furthermore indicates a similar residence time (k d = ∼0.06 s-1) for these two analogs. This novel scaffold therefore represents a possible means to overcome the potential permeability issues of WDR5 ligands that possess highly basic groups like guanidine. The series reported here furthers the understanding of the WDR5 WIN site and functions as a starting point for the development of more potent WDR5 inhibitors that may serve as cancer therapeutics.

19.
Neuro Oncol ; 21(8): 1016-1027, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31002307

ABSTRACT

BACKGROUND: Although epidermal growth factor receptor (EGFR) and its truncated, autoactive mutant EGFR variant (v)III are bona fide drivers of tumorigenesis in some gliomas, therapeutic antibodies developed to neutralize this axis have not improved patient survival in a limited number of trials. Previous studies using cells transduced to exogenously express EGFRvIII may have compromised mechanistic studies of anti-EGFR therapeutics. Therefore, we re-assessed the activity of clinical EGFR antibodies in patient-derived gliomaspheres that endogenously express EGFRvIII. METHODS: The antitumor efficacy of antibodies was assessed using in vitro proliferation assays and intracranial orthografts. Receptor activation status, antibody engagement, oncogenic signaling, and mechanism of action after antibody treatment were analyzed by immunoprecipitation and western blotting. Tracking of antibody receptor complexes was conducted using immunofluorescence. RESULTS: The EGFR domain III-targeting antibodies cetuximab, necitumumab, nimotuzumab, and matuzumab did not neutralize EGFRvIII activation. Chimeric monoclonal antibody 806 (ch806) neutralized EGFRvIII, but not wild-type (wt)EGFR activation. Panitumumab was the only antibody that neutralized both EGFRvIII and wtEGFR, leading to reduction of p-S6 signaling and superior in vitro and in vivo antitumor activity. Mechanistically, panitumumab induced recycling of receptor but not degradation as previously described. Panitumumab, via its unique avidity, stably cross-linked EGFRvIII to prevent its activation, while ch806 induced a marked reduction in the active EGFRvIII disulphide-bonded dimer. CONCLUSIONS: We discovered a previously unknown major resistance mechanism in glioma in that most EGFR domain III-targeting antibodies do not neutralize EGFRvIII. The superior in vitro and in vivo antitumor activity of panitumumab supports further clinical testing of this antibody against EGFRvIII-stratified glioma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , ErbB Receptors , Glioma , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , Glioma/drug therapy , Humans , Signal Transduction
20.
Proteins ; 71(1): 119-30, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17932913

ABSTRACT

Mimotopes mimic the three-dimensional topology of an antigen epitope, and are frequently recognized by antibodies with affinities comparable to those obtained for the original antibody-antigen interaction. Peptides and anti-idiotypic antibodies are two classes of protein mimotopes that mimic the topology (but not necessarily the sequence) of the parental antigen. In this study, we combine these two classes by selecting mimotopes based on single domain IgNAR antibodies, which display exceptionally long CDR3 loop regions (analogous to a constrained peptide library) presented in the context of an immunoglobulin framework with adjacent and supporting CDR1 loops. By screening an in vitro phage-display library of IgNAR variable domains (V(NAR)s) against the target antigen monoclonal antibody MAb5G8, we obtained four potential mimotopes. MAb5G8 targets a linear tripeptide epitope (AYP) in the flexible signal sequence of the Plasmodium falciparum Apical Membrane Antigen-1 (AMA1), and this or similar motifs were detected in the CDR loops of all four V(NAR)s. The V(NAR)s, 1-A-2, -7, -11, and -14, were demonstrated to bind specifically to this paratope by competition studies with an artificial peptide and all showed enhanced affinities (3-46 nM) compared to the parental antigen (175 nM). Crystallographic studies of recombinant proteins 1-A-7 and 1-A-11 showed that the SYP motifs on these V(NAR)s presented at the tip of the exposed CDR3 loops, ideally positioned within bulge-like structures to make contact with the MAb5G8 antibody. These loops, in particular in 1-A-11, were further stabilized by inter- and intra- loop disulphide bridges, hydrogen bonds, electrostatic interactions, and aromatic residue packing. We rationalize the higher affinity of the V(NAR)s compared to the parental antigen by suggesting that adjacent CDR1 and framework residues contribute to binding affinity, through interactions with other CDR regions on the antibody, though of course definitive support of this hypothesis will rely on co-crystallographic studies. Alternatively, the selection of mimotopes from a large (<4 x 10(8)) constrained library may have allowed selection of variants with even more favorable epitope topologies than present in the original antigenic structure, illustrating the power of in vivo selection of mimotopes from phage-displayed molecular libraries.


Subject(s)
Antibodies, Monoclonal , Complementarity Determining Regions/immunology , Epitopes , Immunoglobulins , Animals , Binding Sites , Complementarity Determining Regions/chemistry , Mice , Molecular Mimicry , Plasmodium falciparum , Protein Binding , Sharks
SELECTION OF CITATIONS
SEARCH DETAIL