Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445243

ABSTRACT

Nanomaterials are currently being developed for the specific cell/tissue/organ delivery of genetic material. Nanomaterials are considered as non-viral vectors for gene therapy use. However, there are several requirements for developing a device small enough to become an efficient gene-delivery tool. Considering that the non-viral vectors tested so far show very low efficiency of gene delivery, there is a need to develop nanotechnology-based strategies to overcome current barriers in gene delivery. Selected nanostructures can incorporate several genetic materials, such as plasmid DNA, mRNA, and siRNA. In the field of nanotechnologies, there are still some limitations yet to be resolved for their use as gene delivery systems, such as potential toxicity and low transfection efficiency. Undeniably, novel properties at the nanoscale are essential to overcome these limitations. In this paper, we will explore the latest advances in nanotechnology in the gene delivery field.


Subject(s)
Genetic Therapy , Nanostructures/therapeutic use , Nanotechnology , Transfection , Animals , Humans
2.
Redox Biol ; 66: 102862, 2023 10.
Article in English | MEDLINE | ID: mdl-37660443

ABSTRACT

The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor) , Retinal Degeneration , Retinitis Pigmentosa , Animals , Humans , Mice , Disease Models, Animal , Homeostasis , Oxidative Stress , Retina , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
3.
Invest Ophthalmol Vis Sci ; 61(8): 14, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32658961

ABSTRACT

Purpose: Close to 100 genes cause retinitis pigmentosa, a Mendelian rare disease that affects 1 out of 4000 people worldwide. Mutations in the ceramide kinase-like gene (CERKL) are a prevalent cause of autosomal recessive cause retinitis pigmentosa and cone-rod dystrophy, but the functional role of this gene in the retina has yet to be fully determined. We aimed to generate a mouse model that resembles the phenotypic traits of patients carrying CERKL mutations to undertake functional studies and assay therapeutic approaches. Methods: The Cerkl locus has been deleted (around 97 kb of genomic DNA) by gene editing using the CRISPR-Cas9 D10A nickase. Because the deletion of the Cerkl locus is lethal in mice in homozygosis, a double heterozygote mouse model with less than 10% residual Cerkl expression has been generated. The phenotypic alterations of the retina of this new model have been characterized at the morphological and electrophysiological levels. Results: This CerklKD/KO model shows retinal degeneration, with a decreased number of cones and progressive photoreceptor loss, poorly stacked photoreceptor outer segment membranes, defective retinal pigment epithelium phagocytosis, and altered electrophysiological recordings in aged retinas. Conclusions: To our knowledge, this is the first Cerkl mouse model to mimic many of the phenotypic traits, including the slow but progressive retinal degeneration, shown by human patients carrying CERKL mutations. This useful model will provide unprecedented insights into the retinal molecular pathways altered in these patients and will contribute to the design of effective treatments.


Subject(s)
CRISPR-Cas Systems/genetics , DNA/genetics , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Animals , Cells, Cultured , DNA Mutational Analysis , Disease Models, Animal , Mice , Mice, Inbred C57BL , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology
4.
Genes (Basel) ; 10(4)2019 04 09.
Article in English | MEDLINE | ID: mdl-30970664

ABSTRACT

Many rare diseases course with affectation of neurosensory organs. Among them, the neuroepithelial retina is very vulnerable due to constant light/oxidative stress, but it is also the most accessible and amenable to gene manipulation. Currently, gene addition therapies targeting retinal tissue (either photoreceptors or the retinal pigment epithelium), as a therapy for inherited retinal dystrophies, use adeno-associated virus (AAV)-based approaches. However, efficiency and safety of therapeutic strategies are relevant issues that are not always resolved in virus-based gene delivery and alternative methodologies should be explored. Based on our experience, we are currently assessing the novel physical properties at the nanoscale of inorganic gold nanoparticles for delivering genes to the retinal pigment epithelium (RPE) as a safe and efficient alternative approach. In this work, we present our preliminary results using DNA-wrapped gold nanoparticles (DNA-gold NPs) for successful in vitro gene delivery on human retinal pigment epithelium cell cultures, as a proof-of-principle to assess its feasibility for retina in vivo gene delivery. Our results show faster expression of a reporter gene in cells transfected with DNA-gold NPs compared to DNA-liposome complexes. Furthermore, we show that the DNA-gold NPs follow different uptake, internalization and intracellular vesicle trafficking routes compared to pristine NPs.


Subject(s)
DNA/pharmacology , Gene Transfer Techniques , Metal Nanoparticles/chemistry , Retinal Pigment Epithelium/metabolism , DNA/chemistry , DNA/genetics , Dependovirus/genetics , Genetic Therapy , Gold/chemistry , Humans , Liposomes/chemistry , Liposomes/therapeutic use , Metal Nanoparticles/therapeutic use , Photoreceptor Cells/drug effects , Photoreceptor Cells/metabolism , Plasmids/genetics , Plasmids/therapeutic use , Retina/metabolism , Retina/pathology , Retinal Pigment Epithelium/pathology , Transfection
5.
Biol Open ; 4(2): 224-32, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25617419

ABSTRACT

Sumoylation is a reversible post-translational modification that regulates different cellular processes by conjugation/deconjugation of SUMO moieties to target proteins. Most work on the functional relevance of SUMO has focused on cell cycle, DNA repair and cancer in cultured cells, but data on the inter-dependence of separate components of the SUMO pathway in highly specialized tissues, such as the retina, is still scanty. Nonetheless, several retinal transcription factors (TFs) relevant for cone and rod fate, as well as some circadian rhythm regulators, are regulated by sumoylation. Here we present a comprehensive survey of SUMO pathway gene expression in the murine retina by quantitative RT-PCR and in situ hybridization (ISH). The mRNA expression levels were quantified in retinas obtained under four different light/dark conditions, revealing distinct levels of gene expression. In addition, a SUMO pathway retinal gene atlas based on the mRNA expression pattern was drawn. Although most genes are ubiquitously expressed, some patterns could be defined in a first step to determine its biological significance and interdependence. The wide expression of the SUMO pathway genes, the transcriptional response under several light/dark conditions, and the diversity of expression patterns in different cell layers clearly support sumoylation as a relevant post-translational modification in the retina. This expression atlas intends to be a reference framework for retinal researchers and to depict a more comprehensive view of the SUMO-regulated processes in the retina.

SELECTION OF CITATIONS
SEARCH DETAIL