Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Faraday Discuss ; 250(0): 110-128, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37987255

ABSTRACT

One of the possible solutions to circumvent the sluggish kinetics, low capacity, and poor integrity of inorganic cathodes commonly used in rechargeable aluminium batteries (RABs) is the use of redox-active polymers as cathodes. They are not only sustainable materials characterised by their structure tunability, but also exhibit a unique ion coordination redox mechanism that makes them versatile ion hosts suitable for voluminous aluminium cation complexes, as demonstrated by the poly(quinoyl) family. Recently, phenazine-based compounds have been found to have high capacity, reversibility and fast redox kinetics in aqueous electrolytes because of the presence of a CN double bond. Here, we present one of the first examples of a phenazine-based hybrid microporous polymer, referred to as IEP-27-SR, utilized as an organic cathode in an aluminium battery with an AlCl3/EMIMCl ionic liquid electrolyte. The preliminary redox and charge storage mechanism of IEP-27-SR was confirmed by ex situ ATR-IR and EDS analyses. The introduction of phenazine active units in a robust microporous framework resulted in a remarkable rate capability (specific capacity of 116 mA h g-1 at 0.5C with 77% capacity retention at 10C) and notable cycling stability, maintaining 75% of its initial capacity after 3440 charge-discharge cycles at 1C (127 days of continuous cycling). This superior performance compared to reported Al//n-type organic cathode RABs is attributed to the stable 3D porous microstructure and the presence of micro/mesoporosity in IEP-27-SR, which facilitates electrolyte permeability and improves kinetics.

2.
J Am Chem Soc ; 142(11): 5146-5153, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32031361

ABSTRACT

The electrochemical degradation of two solvent-based electrolytes for Mg-metal batteries is investigated through a grand canonical density functional theory (DFT) approach. Both electrolytes are highly reactive in the double layer region where the solvated species have no direct contact with the Mg-surface, hence emphasizing that surface reactions are not the only phenomena responsible for electrolyte degradation. Applied to dimethoxyethane (DME) and ethylene carbonate (EC), the present methodology shows that both solvents should thermodynamically decompose in the double layer prior to the Mg2+/Mg0 reduction, leading to electrochemically inactive reaction products. Based on thermodynamic considerations, Mg0 deposition should not be possible, which contrasts with experiments, at least for DME-based electrolytes. This apparent contradiction is here addressed through the rationalization of the electrochemical mechanism underlying solvent electroactivation. An extended operation potential window (OPW) is extracted, in which the Mg2+/Mg0 reduction can compete with electrolyte decomposition, thus enabling battery operation beyond the solvated species thermodynamic stability. The chemical study of the degradation products is in excellent agreement with experiments and offers rationale for the Mg-battery failure in EC electrolyte and capacity fade in DME electrolyte. The potential-dependent approach proposed herein is thus able to successfully tackle the challenging problem of interface electrochemistry. Being fully transferable to any other electrochemical systems, this methodology should provide rational guidelines for the development of viable electrolytes for multivalent batteries and, more generally, energy conversion and storage devices.

3.
Phys Chem Chem Phys ; 21(5): 2434-2442, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30652701

ABSTRACT

One of the crucial steps for the development of batteries is understanding the interface stability and morphological changes occurring during continuous stripping and deposition. In order to investigate the dependence of morphology evolution on surface orientation, we examine the energetics and growth mechanism on magnesium (0001), (101[combining macron]0), (101[combining macron]1), (112[combining macron]0) and (112[combining macron]1) surface orientations using density functional theory and kinetic Monte Carlo simulations. Workfunctions, surface, adsorption and interaction energies, diffusion barriers and k-rates for diffusion via hopping and exchange mechanisms are studied. The results provide a comprehensive relationship between these properties and morphology evolution. The latter shows strong dependence on the surface orientation, demonstrating the need for all commonly present facets to be studied, instead of focusing only on the most stable surface orientation.

4.
Inorg Chem ; 57(18): 11646-11654, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30156407

ABSTRACT

The search for high Li-ion conducting ceramics has regained tremendous interest triggered by the renaissance of the all-solid-state battery. Within this context we herein reveal the impact of structural polymorphism of lithium copper pyroborate Li6CuB4O10 on its ionic conductivity. Using combined in situ synchrotron X-ray and neutron powder diffraction, a structural and synthetic relationship between α- and ß-Li6CuB4O10 could be established and its impact on ionic conductivity evolution was followed using electrochemical impedance spectroscopy. We show that the high temperature form of Li6CuB4O10 exhibits a high Li-ion conductivity (2.7 mS cm-1 at 350 °C) and solve its crystal structure for the first time. Our results emphasize the significant impact of structural phase transitions on ionic conductivity and show possible high Li-ion mobility within borate based compounds.

5.
Phys Chem Chem Phys ; 20(4): 2330-2338, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29303189

ABSTRACT

Conversion type materials, in particular metal fluorides, have emerged as attractive candidates for positive electrodes in next generation Li-ion batteries (LIBs). However, their practical use is being hindered by issues related to reversibility and large polarization. To minimize these issues, a few approaches enlisting the anionic network have been considered. We herein report the electrochemical properties of bismuth oxyborate Bi4B2O9 and show that this compound reacts with lithium via a conversion reaction leading to a sustained capacity of 140 mA h g-1 when cycled between 1.7 and 3.5 V vs. Li+/Li0 while having a surprisingly small polarization (∼300 mV) in the presence of solely 5% in weight of a carbon additive. These observations are rationalized in terms of charge transfer kinetics via complementary XRD, HRTEM and NMR measurements. This finding demonstrates that borate based conversion type materials display rapid charge transfer with limited carbon additives, hence offering a new strategy to improve their overall cycling efficiency.

6.
Chemistry ; 22(10): 3355-3360, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26833692

ABSTRACT

For the design of light-metal-sulfur batteries and for the understanding of their performance, knowledge on the stable crystalline polysulfides is very important. We confronted experimental and ab initio crystal structure prediction studies on the stability of Na polysulfides. The selected evolutionary-based structure-prediction algorithm was able to quickly and correctly predict the thermodynamically stable crystalline forms of Na polysulfides with small unit cells. For Na polysulfides with large unit cells, the algorithm correctly proposed short unbranched polysulfide chains to be energetically favorite structural motifs, but could not find proper three-dimensional structures in the limited number of generations. Experimentally, the polysulfides were studied by X-ray diffraction and 23 Na solid-state NMR spectroscopy. Complemented by calculations of the isotropic chemical shifts and quadrupolar coupling constants, NMR spectroscopy proved to be an excellent tool for the examination of Na polysulfides, because it allowed easy distinction and quantification of components in the samples.

7.
Inorg Chem ; 55(24): 12775-12782, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989176

ABSTRACT

In the search for new cathode materials for sodium ion batteries, the exploration of polyanionic compounds has led to attractive candidates in terms of high redox potential and cycling stability. Herein we report the synthesis of the two new sodium transition-metal pentaborates Na3MB5O10 (M = Fe, Co), where Na3FeB5O10 represents the first sodium iron borate reported at present. By means of synchrotron X-ray diffraction, we reveal a layered structure consisting of pentaborate B5O10 groups connected through M2+ in tetrahedral coordination, providing possible three-dimensional Na-ion migration pathways. Inspired by these structural features, we examined the electrochemical performances versus sodium and showed that Na3FeB5O10 is active at an average potential of 2.5 V vs Na+/Na0, correlated to the Fe3+/Fe2+ redox couple as deduced from ex situ Mössbauer measurements. This contrasts with the case for Na3CoB5O10, which is electrochemically inactive. Moreover, we show that their electrochemical performances are kinetically limited, as deduced by complementary ac/dc conductivity measurements, hence confirming once again the complexity in designing high-performance borate-based electrodes.

8.
Phys Chem Chem Phys ; 18(22): 14960-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27189653

ABSTRACT

In the search for new cathode materials for Li-ion batteries, borate (BO3(3-)) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O5(4-) based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (∼0.3 Li(+)) in a potential window ranging from 2.5 to 4.5 V vs. Li(+)/Li(0). We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li(+)/Li(0) is associated with the Cu(3+)/Cu(2+) redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li(+)/Li(0) which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ∼1.4 mS cm(-1) at 500 °C.

9.
Acta Chim Slov ; 63(3): 569-77, 2016.
Article in English | MEDLINE | ID: mdl-27640383

ABSTRACT

The electrochemical characteristics of sulfurized polyacrylonitrile composite (PAN/S) cathodes were compared with the commonly used carbon/S-based composite material. The difference in the working mechanism of these composites was examined. Analytical investigations were performed on both kinds of cathode electrode composites by using two reliable analytical techniques, in-situ UV-Visible spectroscopy and a four-electrode Swagelok cell. This study differentiates the working mechanisms of PAN/S composites from conventional elemental sulphur/carbon composite and also sheds light on factors that could be responsible for capacity fading in the case of PAN/S composites.

10.
J Am Chem Soc ; 137(14): 4804-14, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25811894

ABSTRACT

Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct voltage plateau from the peroxo/superoxo formation making this material ideal for revealing new aspects of oxygen redox processes in Li-rich oxides. Moreover, we directly demonstrate the limited reversibility of the oxygenated species (O2(n-); n = 1, 2, 3) for the first time. We also find that during charge to 4.2 V iron is oxidized from +3 to an unusual +4 state with the concomitant formation of oxygenated species. Upon further charge to 5.0 V, an oxygen release process associated with the reduction of iron +4 to +3 is present, indicative of the reductive coupling mechanism between oxygen and metals previously reported. Thus, in full state of charge, lithium removal is fully compensated by oxygen only, as the iron and antimony are both very close to their pristine states. Besides, this charging step results in complex phase transformations that are ultimately destructive to the crystallinity of the material. Such findings again demonstrate the vital importance of fully understanding the behavior of oxygen in such systems. The consequences of these new aspects of the electrochemical behavior of lithium-rich oxides are discussed in detail.

11.
Chemphyschem ; 15(5): 894-904, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24497200

ABSTRACT

Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long-cycle-life lithium-sulfur (Li-S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K-edge X-ray absorption near-edge structure (XANES) and (6,7) Li magic-angle spinning (MAS) NMR studies on a Li-S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all-sulfur-based components in the Li-S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using (7) Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li-S batteries.

12.
Chem Mater ; 36(3): 1025-1040, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38370280

ABSTRACT

Organic active materials are seen as next-generation battery materials that could circumvent the sustainability and cost limitations connected with the current Li-ion battery technology while at the same time enabling novel battery functionalities like a bioderived feedstock, biodegradability, and mechanical flexibility. Many promising research results have recently been published. However, the reproducibility and comparison of the literature results are somehow limited due to highly variable electrode formulations and electrochemical testing conditions. In this Perspective, we provide a critical view of the organic cathode active materials and suggest future guidelines for electrochemical characterization, capacity evaluation, and mechanistic investigation to facilitate reproducibility and benchmarking of literature results, leading to the accelerated development of organic electrode active materials for practical applications.

13.
ACS Appl Mater Interfaces ; 16(13): 16029-16039, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511931

ABSTRACT

Despite the rapid expansion of the organic cathode materials field, we still face a shortage of materials obtained through simple synthesis that have stable cycling and high energy density. Herein, we report a two-step synthesis of a small organic molecule from commercially available precursors that can be used as a cathode material. Oxidized tetraquinoxalinecatechol (OTQC) was derived from tetraquinoxalinecatechol (TQC) by the introduction of additional quinone redox-active centers into the structure. The modification increased the voltage and capacity of the material. The OTQC delivers a high specific capacity of 327 mAh g-1 with an average voltage of 2.63 V vs Li/Li+ in the Li-ion battery. That corresponds to an energy density of 860 Wh kg-1 on the OTQC material level. Furthermore, the material demonstrated excellent cycling stability, having a capacity retention of 82% after 400 cycles. Similarly, the OTQC demonstrates increased average voltage and specific capacity in comparison with TQC in aqueous Zn-organic battery, reaching the specific capacity of 326 mAh g-1 with an average voltage of 0.86 V vs Zn/Zn2+. Apart from good electrochemical performance, this work provides an additional in-depth analysis of the redox mechanism and degradation mechanism related to capacity fading.

14.
J Mater Chem A Mater ; 11(27): 14738-14747, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37441279

ABSTRACT

Ca metal anode rechargeable batteries are seen as a sustainable high-energy density and high-voltage alternative to the current Li-ion battery technology due to the low redox potential of Ca metal and abundance of Ca. Electrolytes are key enablers on the path towards next-generation battery systems. Within this work, we synthesize a new calcium tetrakis(hexafluoroisopropyloxy) aluminate salt, Ca[Al(hfip)4]2, and benchmark it versus the state-of-the-art boron analogue Ca[B(hfip)4]2. The newly developed aluminate-based electrolyte exhibits improved performance in terms of conductivity, Ca plating/stripping efficiency, and oxidative stability as well as Ca battery cell performance. A marked improvement of 0.5 V higher oxidative stability can pave the path towards high-voltage Ca batteries. A critical issue of solvent quality during salt synthesis is identified as well as solvent decomposition at the Ca metal/electrolyte interface, which leads to passivation of the Ca metal anode. However, the new aluminate salt with preferable electrochemical properties over the existing boron analogue opens up a new area for future Ca battery research based on aluminium compounds.

15.
Solid State Nucl Magn Reson ; 42: 33-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22033467

ABSTRACT

Analysis of (6)Li MAS NMR spectra of several lithium transition-metal orthosilicates (Li(2)MSiO(4), M = Mn, Fe, Zn) improved the understanding of the relation between the spectral parameters and the structural characteristics of the materials. It was shown that for manganese- and iron-containing materials the width of the (6)Li spinning-sideband powder patterns can be roughly related to the arrangement of the transition-metal cations within the first cation coordination sphere around lithium. In mixed zinc-manganese lithium orthosilicates the (6)Li isotropic shift depends on the number of Li-O-Mn bonds, in which a particular lithium site is involved. Each bond contributes a small negative Fermi-contact hyperfine shift of about -20 to -40 ppm. The precise values of the contributions cannot be easily related to the geometry of the bonds. In iron-containing materials the isotropic shifts are composed of two contributions, the hyperfine shift and the pseudo-contact shift. The latter depends on the anisotropy of the magnetic susceptibility of the material. The magnetic properties of the iron-containing lithium orthosilicates are responsible also for very broad lines within their (6)Li MAS NMR spectra. Pure zinc-lithium orthosilicate exhibits a narrow (6)Li MAS NMR isotropic signal and no spinning-sideband powder pattern.


Subject(s)
Lithium Compounds/chemistry , Lithium/chemistry , Magnetic Resonance Spectroscopy/methods , Materials Testing/methods , Ions
16.
Article in English | MEDLINE | ID: mdl-35642900

ABSTRACT

High-performance electrolytes are at the heart of magnesium battery development. Long-term stability along with the low potential difference between plating and stripping processes are needed to consider them for next-generation battery devices. Within this work, we perform an in-depth characterization of the novel Mg[Al(hfip)4]2 salt in different glyme-based electrolytes. Specific importance is given to the influence of water content and the role of additives in the electrolyte. Mg[Al(hfip)4]2-based electrolytes exemplify high tolerance to water presence and the beneficial effect of additives under aggravated cycling conditions. Finally, electrolyte compatibility is tested with three different types of Mg cathodes, spanning different types of electrochemical mechanisms (Chevrel phase, organic cathode, sulfur). Benchmarking with an electrolyte containing a state-of-the-art Mg[B(hfip)4]2 salt exemplifies an improved performance of electrolytes comprising the Mg[Al(hfip)4]2 salt and establishes Mg[Al(hfip)4]2 as a new standard salt for the future Mg battery research.

17.
Nat Commun ; 13(1): 6326, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36280671

ABSTRACT

The inadequate understanding of the mechanisms that reversibly convert molecular sulfur (S) into lithium sulfide (Li2S) via soluble polysulfides (PSs) formation impedes the development of high-performance lithium-sulfur (Li-S) batteries with non-aqueous electrolyte solutions. Here, we use operando small and wide angle X-ray scattering and operando small angle neutron scattering (SANS) measurements to track the nucleation, growth and dissolution of solid deposits from atomic to sub-micron scales during real-time Li-S cell operation. In particular, stochastic modelling based on the SANS data allows quantifying the nanoscale phase evolution during battery cycling. We show that next to nano-crystalline Li2S the deposit comprises solid short-chain PSs particles. The analysis of the experimental data suggests that initially, Li2S2 precipitates from the solution and then is partially converted via solid-state electroreduction to Li2S. We further demonstrate that mass transport, rather than electron transport through a thin passivating film, limits the discharge capacity and rate performance in Li-S cells.

18.
ACS Appl Energy Mater ; 5(9): 10667-10679, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36185811

ABSTRACT

We report on a detailed structural versus electrochemical property investigation of the corncob-derived non-graphitizable carbons prepared at different carbonization temperatures using a combination of structural characterization methodology unique to this field. Non-graphitizable carbons are currently the most viable option for the negative electrode in sodium-ion batteries. However, many challenges arise from the strong dependence of the precursor's choice and carbonization parameters on the evolution of the carbon matrix and its resulting electrochemistry. We followed structure development upon the increase in carbonization temperature with thorough structural characterization and electrochemical testing. With the increase of carbonization temperature from 900 to 1600 °C, our prepared materials exhibited a trend toward increasing structural order, an increase in the specific surface area of micropores, the development of ultramicroporosity, and an increase in conductivity. This was clearly demonstrated by a synergy of small- and wide-angle X-ray scattering, scanning transmission electron microscopy, and electron-energy loss spectroscopy techniques. Three-electrode full cell measurements confirmed incomplete desodiation of Na+ ions from the non-graphitizable carbons in the first cycle due to the formation of a solid-electrolyte interface and Na trapping in the pores, followed by a stable second cycle. The study of cycling stability over 100 cycles in a half-cell configuration confirmed the observed high irreversible capacity in the first cycle, which stabilized to a slow decrease afterward, with the Coulombic efficiency reaching 99% after 30 cycles and then stabilizing between 99.3 and 99.5%. Subsequently, a strong correlation between the determined structural properties and the electrochemical behavior was established.

19.
J Phys Chem C Nanomater Interfaces ; 126(12): 5435-5442, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35392436

ABSTRACT

X-ray Raman spectroscopy (XRS) is an emerging spectroscopic technique that utilizes inelastic scattering of hard X-rays to study X-ray absorption edges of low Z elements in bulk material. It was used to identify and quantify the amount of carbonyl bonds in a cathode sample, in order to track the redox reaction inside metal-organic batteries during the charge/discharge cycle. XRS was used to record the oxygen K-edge absorption spectra of organic polymer cathodes from different multivalent metal-organic batteries. The amount of carbonyl bond in each sample was determined by modeling the oxygen K-edge XRS spectra with the linear combination of two reference compounds that mimicked the fully charged and the fully discharged phases of the battery. To interpret experimental XRS spectra, theoretical calculations of oxygen K-edge absorption spectra based on density functional theory were performed. Overall, a good agreement between the amount of carbonyl bond present during different stages of battery cycle, calculated from linear combination of standards, and the amount obtained from electrochemical characterization based on measured capacity was achieved. The electrochemical mechanism in all studied batteries was confirmed to be a reduction of double carbonyl bond and the intermediate anion was identified with the help of theoretical calculations. X-ray Raman spectroscopy of the oxygen K-edge was shown to be a viable characterization technique for accurate tracking of the redox reaction inside metal-organic batteries.

20.
J Am Chem Soc ; 133(5): 1263-5, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21192677

ABSTRACT

Small differences in the FeO(4) arrangements (orientation, size, and distortion) do influence the equilibrium potential measured during the first oxidation of Fe(2+) to Fe(3+) in all polymorphs of Li(2)FeSiO(4).

SELECTION OF CITATIONS
SEARCH DETAIL