Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Nat Chem Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773330

ABSTRACT

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

2.
Cell ; 145(6): 969-80, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21663798

ABSTRACT

Glucose is catabolized in yeast via two fundamental routes, glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Here, we describe riboneogenesis, a thermodynamically driven pathway that converts glycolytic intermediates into ribose-5-phosphate without production of NADPH. Riboneogenesis begins with synthesis, by the combined action of transketolase and aldolase, of the seven-carbon bisphosphorylated sugar sedoheptulose-1,7-bisphosphate. In the pathway's committed step, sedoheptulose bisphosphate is hydrolyzed to sedoheptulose-7-phosphate by the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity we identified based on metabolomic analysis of the corresponding knockout strain. The crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate reveals that the substrate binds in the closed furan form in the active site. Sedoheptulose-7-phosphate is ultimately converted by known enzymes of the nonoxidative pentose phosphate pathway to ribose-5-phosphate. Flux through SHB17 increases when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells.


Subject(s)
Ribosemonophosphates/biosynthesis , Saccharomyces cerevisiae/metabolism , Biosynthetic Pathways , Crystallography, X-Ray , Gene Deletion , Models, Molecular , Pentose Phosphate Pathway , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
3.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34782742

ABSTRACT

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Subject(s)
Cell Nucleolus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Molecular Probes/chemistry , Protein Domains , Repressor Proteins/metabolism , Methylation , Multiple Myeloma/metabolism , Nucleosomes/metabolism
4.
J Chem Inf Model ; 63(13): 4070-4078, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37350740

ABSTRACT

DCAF1 functions as a substrate recruitment subunit for the RING-type CRL4DCAF1 and the HECT family EDVPDCAF1 E3 ubiquitin ligases. The WDR domain of DCAF1 serves as a binding platform for substrate proteins and is also targeted by HIV and SIV lentiviral adaptors to induce the ubiquitination and proteasomal degradation of antiviral host factors. It is therefore attractive both as a potential therapeutic target for the development of chemical inhibitors and as an E3 ligase that could be recruited by novel PROTACs for targeted protein degradation. In this study, we used a proteome-scale drug-target interaction prediction model, MatchMaker, combined with cheminformatics filtering and docking to identify ligands for the DCAF1 WDR domain. Biophysical screening and X-ray crystallographic studies of the predicted binders confirmed a selective ligand occupying the central cavity of the WDR domain. This study shows that artificial intelligence-enabled virtual screening methods can successfully be applied in the absence of previously known ligands.


Subject(s)
Artificial Intelligence , Carrier Proteins , Ligands , Carrier Proteins/chemistry , Ubiquitin-Protein Ligases/metabolism , Machine Learning
5.
Nucleic Acids Res ; 49(20): 11810-11822, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34718722

ABSTRACT

The human pseudouridine synthase PUS7 is a versatile RNA modification enzyme targeting many RNAs thereby playing a critical role in development and brain function. Whereas all target RNAs of PUS7 share a consensus sequence, additional recognition elements are likely required, and the structural basis for RNA binding by PUS7 is unknown. Here, we characterize the structure-function relationship of human PUS7 reporting its X-ray crystal structure at 2.26 Å resolution. Compared to its bacterial homolog, human PUS7 possesses two additional subdomains, and structural modeling studies suggest that these subdomains contribute to tRNA recognition through increased interactions along the tRNA substrate. Consistent with our modeling, we find that all structural elements of tRNA are required for productive interaction with PUS7 as the consensus sequence of target RNA alone is not sufficient for pseudouridylation by human PUS7. Moreover, PUS7 binds several, non-modifiable RNAs with medium affinity which likely enables PUS7 to screen for productive RNA substrates. Following tRNA modification, the product tRNA has a significantly lower affinity for PUS7 facilitating its dissociation. Taken together our studies suggest a combination of structure-specific and sequence-specific RNA recognition by PUS7 and provide mechanistic insight into its function.


Subject(s)
Intramolecular Transferases/chemistry , RNA, Transfer/metabolism , Binding Sites , Humans , Intramolecular Transferases/metabolism , Molecular Docking Simulation , Protein Binding , RNA, Transfer/chemistry
6.
J Biol Chem ; 297(6): 101351, 2021 12.
Article in English | MEDLINE | ID: mdl-34715126

ABSTRACT

Bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) (also called transcription termination factor-1 interacting protein 5), a key component of the nucleolar remodeling complex, recruits the nucleolar remodeling complex to ribosomal RNA genes, leading to their transcriptional repression. In addition to its tandem plant homeodomain-bromodomain that is involved in binding to acetylated histone H4, BAZ2A also contains a methyl-CpG-binding domain (MBD)-like Tip5/ARBP/MBD (TAM) domain that shares sequence homology with the MBD. In contrast with the methyl-CpG-binding ability of the canonical MBD, the BAZ2A TAM domain has been shown to bind to promoter-associated RNAs of ribosomal RNA genes and promoter DNAs of other genes independent of DNA methylation. Nevertheless, how the TAM domain binds to RNA/DNA mechanistically remains elusive. Here, we characterized the DNA-/RNA-binding basis of the BAZ2A TAM domain by EMSAs, isothermal titration calorimetry binding assays, mutagenesis analysis, and X-ray crystallography. Our results showed that the TAM domain of BAZ2A selectively binds to dsDNA and dsRNA and that it binds to the backbone of dsDNA in a sequence nonspecific manner, which is distinct from the base-specific binding of the canonical MBD. Thus, our results explain why the TAM domain of BAZ2A does not specifically bind to mCG or TG dsDNA like the canonical MBD and also provide insights for further biological study of BAZ2A acting as a transcription factor in the future.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , RNA/metabolism , Chromosomal Proteins, Non-Histone/chemistry , DNA/chemistry , DNA Methylation , Humans , Models, Molecular , Protein Binding , Protein Domains , RNA/chemistry
7.
J Biol Chem ; 297(4): 101107, 2021 10.
Article in English | MEDLINE | ID: mdl-34425109

ABSTRACT

Ubiquitination is a crucial posttranslational protein modification involved in a myriad of biological pathways. This modification is reversed by deubiquitinases (DUBs) that deconjugate the single ubiquitin (Ub) moiety or poly-Ub chains from substrates. In the past decade, tremendous efforts have been focused on targeting DUBs for drug discovery. However, most chemical compounds with inhibitory activity for DUBs suffer from mild potency and low selectivity. To overcome these obstacles, we developed a phage display-based protein engineering strategy for generating Ub variant (UbV) inhibitors, which was previously successfully applied to the Ub-specific protease (USP) family of cysteine proteases. In this work, we leveraged the UbV platform to selectively target STAMBP, a member of the JAB1/MPN/MOV34 (JAMM) metalloprotease family of DUB enzymes. We identified two UbVs (UbVSP.1 and UbVSP.3) that bind to STAMBP with high affinity but differ in their selectivity for the closely related paralog STAMBPL1. We determined the STAMBPL1-UbVSP.1 complex structure by X-ray crystallography, revealing hotspots of the JAMM-UbV interaction. Finally, we show that UbVSP.1 and UbVSP.3 are potent inhibitors of STAMBP isopeptidase activity, far exceeding the reported small-molecule inhibitor BC-1471. This work demonstrates that UbV technology is suitable to develop molecules as tools to target metalloproteases, which can be used to further understand the cellular function of JAMM family DUBs.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Peptide Hydrolases , Peptide Library , Protease Inhibitors/chemistry , Ubiquitin Thiolesterase , Ubiquitin , Crystallography, X-Ray , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/chemistry , Humans , Peptide Hydrolases/chemistry , Protein Structure, Quaternary , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/chemistry
8.
Proc Natl Acad Sci U S A ; 116(15): 7288-7297, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30914461

ABSTRACT

USP9X is a conserved deubiquitinase (DUB) that regulates multiple cellular processes. Dysregulation of USP9X has been linked to cancers and X-linked intellectual disability. Here, we report the crystal structure of the USP9X catalytic domain at 2.5-Å resolution. The structure reveals a canonical USP-fold comprised of fingers, palm, and thumb subdomains, as well as an unusual ß-hairpin insertion. The catalytic triad of USP9X is aligned in an active configuration. USP9X is exclusively active against ubiquitin (Ub) but not Ub-like modifiers. Cleavage assays with di-, tri-, and tetraUb chains show that the USP9X catalytic domain has a clear preference for K11-, followed by K63-, K48-, and K6-linked polyUb chains. Using a set of activity-based diUb and triUb probes (ABPs), we demonstrate that the USP9X catalytic domain has an exo-cleavage preference for K48- and endo-cleavage preference for K11-linked polyUb chains. The structure model and biochemical data suggest that the USP9X catalytic domain harbors three Ub binding sites, and a zinc finger in the fingers subdomain and the ß-hairpin insertion both play important roles in polyUb chain processing and linkage specificity. Furthermore, unexpected labeling of a secondary, noncatalytic cysteine located on a blocking loop adjacent to the catalytic site by K11-diUb ABP implicates a previously unreported mechanism of polyUb chain recognition. The structural features of USP9X revealed in our study are critical for understanding its DUB activity. The new Ub-based ABPs form a set of valuable tools to understand polyUb chain processing by the cysteine protease class of DUBs.


Subject(s)
Models, Molecular , Polyubiquitin/chemistry , Ubiquitin Thiolesterase/chemistry , Crystallography, X-Ray , Humans , Polyubiquitin/metabolism , Structure-Activity Relationship , Substrate Specificity , Ubiquitin Thiolesterase/metabolism
9.
Biochem Biophys Res Commun ; 553: 187-190, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33774220

ABSTRACT

PIWI family proteins are important members of Argonaute family that play an essential role in spermatogenesis and development when loaded with piRNAs. Here we solved the crystal structure of the human PIWIL2 PAZ domain and found its PAZ domain adopts a canonical PAZ fold. We furhter built a homology model of PIWIL2 bound to 2 nt 3' overhangs. We found that PIWIL2 utilizes a deep hydrophobic concave to accommodate the 2 nt at 3'-end of RNAs. The recognition of 2 nt 3' overhangs by PIWIL2 is conserved in other human PIWIL proteins, implicating the evolutionarily conserved role of PAZ domain in binding to target RNAs.


Subject(s)
Argonaute Proteins/chemistry , Amino Acid Sequence , Argonaute Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Domains , Protein Folding
10.
Biochem Biophys Res Commun ; 569: 199-206, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34271259

ABSTRACT

The NSD proteins, namely NSD1, NSD2 and NSD3, are lysine methyltransferases, which catalyze mono- and di-methylation of histone H3K36. They are multi-domain proteins, including two PWWP domains (PWWP1 and PWWP2) separated by some other domains. These proteins act as potent oncoproteins and are implicated in various cancers. However the biological functions of these PWWP domains are still largely unknown. To better understand the functions of these proteins' PWWP domains, we cloned, expressed and purified all the PWWP domains of these NSD proteins to characterize their interactions with methylated histone peptides and dsDNA by quantitative binding assays and crystallographic analysis. Our studies indicate that all these PWWP domains except NSD1_PWWP1 bind to trimethylated H3K36, H3K79 peptides and dsDNA weakly. Our crystal structures uncover that the NDS3_PWWP2 and NSD2_PWWP1 domains, which hold an extremely long α-helix and α-helix bundle, respectively, need a conformation adjustment to interact with nucleosome.


Subject(s)
DNA/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Protein Domains , Repressor Proteins/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites/genetics , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Humans , Lysine/chemistry , Lysine/metabolism , Methylation , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nucleic Acid Conformation , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Homology, Amino Acid
11.
J Biol Chem ; 293(42): 16142-16159, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30143532

ABSTRACT

The tuberous sclerosis complex (TSC) is a negative regulator of mTOR complex 1, a signaling node promoting cellular growth in response to various nutrients and growth factors. However, several regulators in TSC signaling still await discovery and characterization. Using pulldown and MS approaches, here we identified the TSC complex member, TBC1 domain family member 7 (TBC1D7), as a binding partner for PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), a negative regulator of Akt kinase signaling. Most TBC domain-containing proteins function as Rab GTPase-activating proteins (RabGAPs), but the crystal structure of TBC1D7 revealed that it lacks residues critical for RabGAP activity. Sequence analysis identified a putative site for both Akt-mediated phosphorylation and 14-3-3 binding at Ser-124, and we found that Akt phosphorylates TBC1D7 at Ser-124. However, this phosphorylation had no effect on the binding of TBC1D7 to TSC1, but stabilized TBC1D7. Moreover, 14-3-3 protein both bound and stabilized TBC1D7 in a growth factor-dependent manner, and a phospho-deficient substitution, S124A, prevented this interaction. The crystal structure of 14-3-3ζ in complex with a phospho-Ser-124 TBC1D7 peptide confirmed the direct interaction between 14-3-3 and TBC1D7. The sequence immediately upstream of Ser-124 aligned with a canonical ß-TrCP degron, and we found that the E3 ubiquitin ligase ß-TrCP2 ubiquitinates TBC1D7 and decreases its stability. Our findings reveal that Akt activity determines the phosphorylation status of TBC1D7 at the phospho-switch Ser-124, which governs binding to either 14-3-3 or ß-TrCP2, resulting in increased or decreased stability of TBC1D7, respectively.


Subject(s)
14-3-3 Proteins/metabolism , Carrier Proteins/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Tuberous Sclerosis , Binding Sites , Carrier Proteins/metabolism , Crystallography, X-Ray , Humans , Intracellular Signaling Peptides and Proteins , Phosphorylation , Protein Binding , Protein Stability , Serine , Ubiquitination , beta-Transducin Repeat-Containing Proteins/metabolism
12.
J Biol Chem ; 293(9): 3410-3420, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29321206

ABSTRACT

Short-chain acylation of lysine residues has recently emerged as a group of reversible posttranslational modifications in mammalian cells. The diversity of acylation further broadens the landscape and complexity of the proteome. Identification of regulatory enzymes and effector proteins for lysine acylation is critical to understand functions of these novel modifications at the molecular level. Here, we report that the MYST family of lysine acetyltransferases (KATs) possesses strong propionyltransferase activity both in vitro and in cellulo Particularly, the propionyltransferase activity of MOF, MOZ, and HBO1 is as strong as their acetyltransferase activity. Overexpression of MOF in human embryonic kidney 293T cells induced significantly increased propionylation in multiple histone and non-histone proteins, which shows that the function of MOF goes far beyond its canonical histone H4 lysine 16 acetylation. We also resolved the X-ray co-crystal structure of MOF bound with propionyl-coenzyme A, which provides a direct structural basis for the propionyltransferase activity of the MYST KATs. Our data together define a novel function for the MYST KATs as lysine propionyltransferases and suggest much broader physiological impacts for this family of enzymes.


Subject(s)
Histone Acetyltransferases/metabolism , Protein Processing, Post-Translational , Acetylation , Amino Acid Sequence , HEK293 Cells , Histone Acetyltransferases/chemistry , Humans , Lysine/metabolism , Models, Molecular , Protein Conformation , Proteomics
13.
Bioorg Med Chem ; 27(17): 3866-3878, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31327677

ABSTRACT

SET domain bifurcated protein 1 (SETDB1) is a human histone-lysine methyltransferase which is amplified in human cancers and was shown to be crucial in the growth of non-small and small cell lung carcinoma. In addition to its catalytic domain, SETDB1 harbors a unique tandem tudor domain which recognizes histone sequences containing both methylated and acetylated lysines, and likely contributes to its localization on chromatin. Using X-ray crystallography and NMR spectroscopy fragment screening approaches, we have identified the first small molecule fragment hits that bind to histone peptide binding groove of the Tandem Tudor Domain (TTD) of SETDB1. Herein, we describe the binding modes of these fragments and analogues and the biophysical characterization of key compounds. These confirmed small molecule fragments will inform the development of potent antagonists of SETDB1 interaction with histones.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/isolation & purification , Histone-Lysine N-Methyltransferase/metabolism , Histones/antagonists & inhibitors , Histones/metabolism , Humans , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Tudor Domain/drug effects
14.
J Biol Chem ; 291(33): 17283-92, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27255711

ABSTRACT

Ubiquitin-specific proteases (USPs) USP15 and USP4 belong to a subset of USPs featuring an N-terminal tandem domain in USP (DUSP) and ubiquitin-like (UBL) domain. Squamous cell carcinoma antigen recognized by T-cell 3 (SART3), a spliceosome recycling factor, binds to the DUSP-UBL domain of USP15 and USP4, recruiting them to the nucleus from the cytosol to control deubiquitination of histone H2B and spliceosomal proteins, respectively. To provide structural insight, we solved crystal structures of SART3 in the apo-form and in complex with the DUSP-UBL domain of USP15 at 2.0 and 3.0 Å, respectively. Structural analysis reveals SART3 contains 12 half-a-tetratricopeptide (HAT) repeats, organized into two subdomains, HAT-N and HAT-C. SART3 dimerizes through the concave surface of HAT-C, whereas the HAT-C convex surface binds USP15 in a novel bipartite mode. Isothermal titration calorimetry measurements and mutagenesis analysis confirmed key residues of USP15 involved in the interaction and indicated USP15 binds 20-fold stronger than USP4.


Subject(s)
Antigens, Neoplasm/chemistry , RNA-Binding Proteins/chemistry , Ubiquitin-Specific Proteases/chemistry , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Crystallography, X-Ray , Humans , Protein Binding , Protein Structure, Quaternary , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repetitive Sequences, Amino Acid , Structure-Activity Relationship , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
15.
Nat Chem Biol ; 11(8): 571-578, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26167872

ABSTRACT

The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Dihydropyridines/pharmacology , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amino Acid Sequence , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Docking Simulation , Molecular Sequence Data , Molecular Targeted Therapy , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Signal Transduction , Tumor Cells, Cultured
16.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3095-3105, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27776223

ABSTRACT

BACKGROUND: Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. METHODS: We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. RESULTS: We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. CONCLUSIONS: The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. GENERAL SIGNIFICANCE: The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.


Subject(s)
Nuclear Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Amino Acid Sequence , Carcinogenesis/metabolism , Carcinogenesis/pathology , Crystallography, X-Ray , Endopeptidases/metabolism , Evolution, Molecular , Humans , Models, Molecular , Nuclear Proteins/antagonists & inhibitors , Phylogeny , Protein Binding , Protein Domains , Protein Stability/drug effects , Protein Structure, Secondary , Proto-Oncogene Mas , Substrate Specificity/drug effects , Ubiquitin-Protein Ligases/antagonists & inhibitors , Vitamin K 3/pharmacology
17.
Bioorg Med Chem ; 25(16): 4414-4423, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28662962

ABSTRACT

Given the high homology between the protein lysine methyltransferases G9a-like protein (GLP) and G9a, it has been challenging to develop potent and selective inhibitors for either enzyme. Recently, we reported two quinazoline compounds, MS0124 and MS012, as GLP selective inhibitors. To further investigate the structure-activity relationships (SAR) of the quinazoline scaffold, we designed and synthesized a range of analogs bearing different 2-amino substitutions and evaluated their inhibition potencies against both GLP and G9a. These studies led to the identification of two new GLP selective inhibitors, 13 (MS3748) and 17 (MS3745), with 59- and 65-fold higher potency for GLP over G9a, which were confirmed by isothermal titration calorimetry (ITC). Crystal structures of GLP and G9a in complex with 13 and 17 provide insight into the interactions of the inhibitors with both proteins. In addition, we generated GLP selective inhibitors bearing a quinoline core instead of the quinazoline core.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Quinazolines/pharmacology , Quinolines/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/isolation & purification , Histone-Lysine N-Methyltransferase/metabolism , Humans , Models, Molecular , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
18.
Biochem J ; 473(2): 179-87, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26527736

ABSTRACT

TXNIP (thioredoxin-interacting protein) negatively regulates the antioxidative activity of thioredoxin and participates in pleiotropic cellular processes. Its deregulation is linked to various human diseases, including diabetes, acute myeloid leukaemia and cardiovascular diseases. The E3 ubiquitin ligase Itch (Itchy homologue) polyubiquitinates TXNIP to promote its degradation via the ubiquitin-proteasome pathway, and this Itch-mediated polyubiquitination of TXNIP is dependent on the interaction of the four WW domains of Itch with the two PPxY motifs of TXNIP. However, the molecular mechanism of this interaction of TXNIP with Itch remains elusive. In the present study, we found that each of the four WW domains of Itch exhibited different binding affinities for TXNIP, whereas multivalent engagement between the four WW domains of Itch and the two PPxY motifs of TXNIP resulted in their strong binding avidity. Our structural analyses demonstrated that the third and fourth WW domains of Itch were able to recognize both PPxY motifs of TXNIP simultaneously, supporting a multivalent binding mode between Itch and TXNIP. Interestingly, the phosphorylation status on the tyrosine residue of the PPxY motifs of TXNIP serves as a molecular switch in its choice of binding partners and thereby downstream biological signalling outcomes. Phosphorylation of this tyrosine residue of TXNIP diminished the binding capability of PPxY motifs of TXNIP to Itch, whereas this phosphorylation is a prerequisite to the binding activity of TXNIP to SHP2 [SH2 (Src homology 2) domain-containing protein tyrosine phosphatase 2] and their roles in stabilizing the phosphorylation and activation of CSK (c-Src tyrosine kinase).


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/genetics , Proline/analogs & derivatives , Amino Acid Sequence , Carrier Proteins/metabolism , Humans , Molecular Sequence Data , Phosphorylation/physiology , Proline/chemistry , Proline/genetics , Proline/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
19.
Biochem J ; 473(19): 3049-63, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27480107

ABSTRACT

PRMT6 is a type I protein arginine methyltransferase, generating the asymmetric dimethylarginine mark on proteins such as histone H3R2. Asymmetric dimethylation of histone H3R2 by PRMT6 acts as a repressive mark that antagonizes trimethylation of H3 lysine 4 by the MLL histone H3K4 methyltransferase. PRMT6 is overexpressed in several cancer types, including prostate, bladder and lung cancers; therefore, it is of great interest to develop potent and selective inhibitors for PRMT6. Here, we report the synthesis of a potent bisubstrate inhibitor GMS [6'-methyleneamine sinefungin, an analog of sinefungin (SNF)], and the crystal structures of human PRMT6 in complex, respectively, with S-adenosyl-L-homocysteine (SAH) and the bisubstrate inhibitor GMS that shed light on the significantly improved inhibition effect of GMS on methylation activity of PRMT6 compared with SAH and an S-adenosyl-L-methionine competitive methyltransferase inhibitor SNF. In addition, we also crystallized PRMT6 in complex with SAH and a short arginine-containing peptide. Based on the structural information here and available in the PDB database, we proposed a mechanism that can rationalize the distinctive arginine methylation product specificity of different types of arginine methyltransferases and pinpoint the structural determinant of such a specificity.


Subject(s)
Arginine/metabolism , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Amino Acid Sequence , Cloning, Molecular , Crystallography, X-Ray , Humans , Methylation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Conformation , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/genetics , Sequence Homology, Amino Acid
20.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136132

ABSTRACT

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Subject(s)
Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Pyrrolidines/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Tetrahydroisoquinolines/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Fibroblasts/drug effects , Hippo Signaling Pathway , Histone-Lysine N-Methyltransferase/genetics , Humans , MCF-7 Cells , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Pyrrolidines/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Tetrahydroisoquinolines/chemistry , Transcription Factors , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL