ABSTRACT
An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.
ABSTRACT
Depression is highly prevalent in haemodialysis patients, and diet might play an important role. Therefore, we conducted this cross-sectional study to determine the association between dietary fatty acids (FA) consumption and the prevalence of depression in maintenance haemodialysis (MHD) patients. Dietary intake was assessed using a validated FFQ between December 2021 and January 2022. The daily intake of dietary FA was categorised into three groups, and the lowest tertile was used as the reference category. Depression was assessed using the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline (RCS) models were applied to assess the relationship between dietary FA intake and the prevalence of depression. As a result, after adjustment for potential confounders, a higher intake of total FA [odds ratio (OR)T3 vs. T1 = 1·59, 95 % confidence interval (CI) = 1·04, 2·46] and saturated fatty acids (SFA) (ORT3 vs. T1 = 1·83, 95 % CI = 1·19, 2·84) was associated with a higher prevalence of depressive symptoms. Significant positive linear trends were also observed (P < 0·05) except for SFA intake. Similarly, the prevalence of depression in MHD patients increased by 20% (OR = 1.20, 95% CI = 1.01-1.43) for each standard deviation increment in SFA intake. RCS analysis indicated an inverse U-shaped correlation between SFA and depression (P nonlinear > 0·05). Additionally, the sensitivity analysis produced similar results. Furthermore, no statistically significant association was observed in the subgroup analysis with significant interaction. In conclusion, higher total dietary FA and SFA were positively associated with depressive symptoms among MHD patients. These findings inform future research exploring potential mechanism underlying the association between dietary FA and depressive symptoms in MHD patients.
ABSTRACT
INTRODUCTION: Patients undergoing hemodialysis (HD) are highly vulnerable during the COVID-19 pandemic. We aimed to investigate the risk factors associated with the severity of COVID-19 and death after the complete liberalization of epidemic control in China. METHODS: We followed the outcomes of the HD patients of Central Hospital of Dalian University of Technology, from December 6, 2022 to January 8, 2023. The non-contrast enhanced chest computed tomography (CT) was performed on all COVID-19-infected hospitalized patients. We recorded the patient's clinical characteristics, demographic features, vaccination history, treatments, and lung lesions. Odds ratios and 95% confidence intervals were calculated using logistic regression models to identify independent risk factors for COVID-19-related severity and mortality. RESULTS: This study included a total of 858 hemodialysis patients, of which 660 were infected with COVID-19. The mean age was (55.61±14.61) years, with a median (interquartile range) dialysis duration of 44.5 (69.5) months. Over half (60%) of the study participants were male, and the majority had hypertension as a comorbidity. Multivariable analysis revealed that age, pre-dialysis diastolic pressure, fever, white blood cell (WBC) count, potassium, ß2-microglobulin level and calcium were independent risk factors for disease severity, while platelets, urea nitrogen and creatinine were identified as independent protective factors. Furthermore, total iron- binding capacity and vaccination were found to be independent protective factors against mortality, and WBC count was an independent risk factor for in-hospital mortality (p < 0.05). The most frequent CT finding among hospitalized patients with chest symptoms was patchy shadow or pleural effusion, observed in 64.8% of cases. More than half of the patients exhibited bilateral lung lesions, and over 60% involved two or more lobes. CONCLUSION: The majority of HD patients are susceptible to COVID-19. Demographic, clinical features and laboratory indicators can be used to predict the severity and mortality associated with COVID-19. Our findings will assist clinicians in identifying markers for the early detection of high mortality risk in HD patients with COVID-19.
ABSTRACT
BACKGROUND: The relationship between handgrip strength (HGS) and depression in patients undergoing hemodialysis (HD) was unknown. Therefore, we aimed to clarify this association in a cohort of patients. METHODS: HGS was used as a representative indicator of muscle strength and was measured with a handheld dynamometer. Depressive symptoms were assessed with the self-reported Patient Health Questionnaire-9. A multivariable logistic regression model and restricted cubic spline analysis were used to assess the relationship between HGS and depression. RESULTS: The prevalence of depression in our study was 34% in 568 Chinese patients undergoing HD. Compared with patients in the lowest tertiles of absolute and weighted HGS, patients in the highest tertiles of HGS had an approximately 59% lower [odds ratio (OR) = 0.41, 95% confidence interval (CI) = 0.24-0.68; OR = 0.41, 95%CI = (0.24-0.69)] prevalence of depressive symptoms after multivariate adjustments. Besides, the risk of depression in hemodialysis patients decreased by 33% (OR = 0.67, 95%CI = 0.53-0.85) and 32% (OR = 0.68, 95%CI = 0.54-0.85) for each standard deviation increase in absolute HGS and weighted HGS, respectively. The prevalence of depressive symptoms decreased with both increasing absolute HGS and weighted HGS after multivariate adjustments (p for trend < 0.05). Furthermore, a linear dose-response relationship was observed between absolute HGS and weighted HGS and the prevalence of depressive symptoms (pnonlinearity>0.05). CONCLUSIONS: This study suggests that lower handgrip strength, a simple and modifiable parameter, is associated with a higher prevalence of depression in Chinese patients undergoing HD. Considering that depression is often unrecognized or underdiagnosed in HD patients, lowered muscle strength should be an important indicator and incentive for medical staff to screen for depression.
Subject(s)
Depression , Hand Strength , Humans , Cross-Sectional Studies , Depression/epidemiology , Renal Dialysis , China/epidemiologyABSTRACT
Supported metal catalysts are widely used for chemical conversion, in which construction of high density metal-oxide or oxide-metal interface is an important means to improve their reaction performance. Here, Cu@ZnOx encapsulation structure has been in situ constructed through gas-phase migration of Zn species from ZnO particles onto surface of Cu nanoparticles under CO2 hydrogenation atmosphere at 450 °C. The gas-phase deposition of Zn species onto the Cu surface and growth of ZnOx overlayer is self-limited under the high temperature and redox gas (CO2 /H2 ) conditions. Accordingly, high density ZnOx -Cu interface sites can be effectively tailored to have an enhanced activity in CO2 hydrogenation to methanol. This work reveals a new route for the construction of active oxide-metal interface and classic strong metal-support interaction state through gas-phase migration of support species induced by high temperature redox reaction atmosphere.
ABSTRACT
In situ construction of active structure under reaction conditions is highly desired but still remains challenging in many important catalytic processes. Herein, we observe structural evolution of molybdenum oxide (MoOx) into highly active molybdenum carbide (MoCx) during reverse water-gas shift (RWGS) reaction. Surface oxygen atoms in various Mo-based catalysts are removed in H2-containing atmospheres and then carbon atoms can accumulate on surface to form MoCx phase with the RWGS reaction going on, both of which are enhanced by the presence of intercalated H species or Pt-dopants in MoOx. The structural evolution from MoOx to MoCx is accompanied by enhanced CO2 conversion, which is positively correlated with the surface C/Mo ratio but negatively with the surface O/Mo ratio. As a result, an unprecedented CO formation rate of 7544.6â mmol â gcatal -1 â h-1 at 600 °C has been achieved over in situ carbonized H-intercalated MoO3 catalyst, which is even higher than those from noble metal catalysts. During 100â h stability test only a minimal deactivation rate of 2.3 % is observed.
ABSTRACT
Supported oxides are widely used in many important catalytic reactions, in which the interaction between the oxide catalyst and oxide support is critical but still remains elusive. Here, we construct a chemically bonded oxide-oxide interface by chemical deposition of Co3O4 onto ZnO powder (Co3O4/ZnO), in which complete reduction of Co3O4 to Co0 has been strongly impeded. It was revealed that the local interfacial confinement effect between Co oxide and the ZnO support helps to maintain a metastable CoOx state in CO2 hydrogenation reaction, producing 93% CO. In contrast, a physically contacted oxide-oxide interface was formed by mechanically mixing Co3O4 and ZnO powders (Co3O4-ZnO), in which reduction of Co3O4 to Co0 was significantly promoted, demonstrating a quick increase of CO2 conversion to 45% and a high selectivity toward CH4 (92%) in the CO2 hydrogenation reaction. This interface effect is ascribed to unusual remote spillover of dissociated hydrogen species from ZnO nanoparticles to the neighboring Co oxide nanoparticles. This work clearly illustrates the equally important but opposite local and remote effects at the oxide-oxide interfaces. The distinct oxide-oxide interactions contribute to many diverse interface phenomena in oxide-oxide catalytic systems.
ABSTRACT
In contrast to numerous studies on oxygen species, the interaction of volatile organic compounds (VOCs) with oxides is also critical to the catalytic reaction but has hardly been considered. Herein, we develop a highly efficient Pt atom doped spinel CoMn2O4 (Pt-CoMn) for oxidation of toluene at low temperature, and the toluene conversion rate increased by 18.3 times (129.7 versus 7.1 × 10-11 mol/(m2·s)) at 160 °C compared to that of CoMn2O4. Detailed characterizations and density functional theory calculations reveal that the local electron environment of the Co sites is changed after Pt doping, and the formed electron-deficient Co sites in turn strengthen the interaction with toluene. Adsorbed toluene will react with lattice oxygen in Pt-CoMn and CoMn catalysts and convert into benzoate intermediates, and the consumption rate of benzoate is closely related to the activation of gaseous oxygen. Significantly, the abundant bulk defects of Pt-CoMn help to open the reaction channel in the CoMn spinel, which acts as an oxygen pump to promote the transformation of bulk lattice oxygen into surface lattice oxygen at lower temperatures, thus accelerating the conversion rate of benzoate intermediates into CO2 and enhancing low-temperature combustion of toluene. Pt-CoMn developed here emphasizes the regulation of VOCs adsorption strength and lattice oxygen transformation processes on CoMn2O4 by adjusting the local electron environment, which will provide new guidance for the design of efficient oxide catalysts for catalytic oxidation.
Subject(s)
Electrons , Oxygen , Adsorption , Oxides , Toluene , Benzoates , CatalysisABSTRACT
BACKGROUND: The association between serum ß2-microglobulin (ß2M) levels and the risk of all-cause and cardiovascular disease (CVD) mortality and the incidence of cardiovascular events (CVEs) in patients undergoing maintenance hemodialysis (MHD) is inconclusive. Furthermore, no study has been performed in China on the significance of serum ß2M levels in MHD patients. Therefore, this study investigated the aforementioned association in MHD patients. METHODS: In this prospective cohort study, 521 MHD patients were followed at Dalian Municipal Central Hospital affiliated with Dalian University of Technology from December 2019 to December 2021. The serum ß2M levels were categorized into three tertiles, and the lowest tertile served as the reference group. Survival curves were calculated by the Kaplan-Meier method. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazard models. Sensitivity analysis was performed by excluding patients with CVD at baseline. RESULTS: During the follow-up period of 21.4 ± 6.3 months, there were 106 all-cause deaths, of which 68 were caused by CVD. When excluding CVD patients at baseline, there were 66 incident CVEs. Kaplan-Meier analysis revealed that the risk of all-cause and CVD mortality in the highest tertile of serum ß2M levels was significantly higher than that in the lowest tertile (P < 0.05), but not for the CVEs (P > 0.05). After adjusting for potential confounders, serum ß2M levels were positively associated with the risk of all-cause (HR = 2.24, 95% CI = 1.21-4.17) and CVD (HR = 2.54, 95% CI = 1.19-5.43) mortality, and a linear trend was evident (P < 0.05). Besides, the results of sensitivity analysis were consistent with the main findings. However, we didn't observed the significant association between serum ß2M levels and CVEs (P > 0.05). CONCLUSION: The serum ß2M level may be a significant predictor of the risk of all-cause and CVD mortality in MHD patients. Further studies are needed to confirm this finding.
Subject(s)
Cardiovascular Diseases , beta 2-Microglobulin , Humans , Asian People , Cardiovascular Diseases/mortality , East Asian People , Prospective Studies , Renal Dialysis/mortality , beta 2-Microglobulin/bloodABSTRACT
OBJECTIVES: Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. METHODS: An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. RESULTS: A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). CONCLUSIONS: Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment. KEY POINT: ⢠AI system can predict time to critical illness for patients with COVID-19 by using CT imaging and clinical data.
Subject(s)
COVID-19 , Artificial Intelligence , Humans , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: Higher serum galectin-3 levels are related to adverse outcomes in different disease states. However, the association of galectin-3 with mortality in the maintenance hemodialysis (HD) population has not been fully described. Thus, we aimed to assess the predictive significance of galectin-3 for all-cause and cardiovascular (CV) mortality through a Chinese maintenance HD population. METHODS: A prospective cohort study was conducted in five hundred and six patients with end-stage renal disease who underwent hemodialysis at Dalian Central Hospital before December 31, 2014. Serum galectin-3 levels were measured at baseline and classified as high (> 8.65 ng/ml) or low (≤ 8.65 ng/ml) according to the "X-tile" program. Primary and secondary outcomes were all-cause and CV mortality, respectively. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated by the Cox proportional hazards regression models. RESULTS: During the median follow-up of 60 months, there were 188 all-cause deaths and 125 CV deaths. Compared with maintenance HD population with galectin-3 ≤ 8.65 ng/ml, the adjusted HR for all-cause mortality among those with galectin-3 > 8.65 ng/ml was 1.59 (CI: 0.96-2.65, p = 0.07). Furthermore, multivariable analysis showed that maintenance HD patients with galectin-3 > 8.65 ng/ml had a 2.13-fold higher risk of CV death than those with galectin-3 ≤ 8.65 ng/ml (HR = 2.13, 95% CI 1.07-4.26). CONCLUSION: Galectin-3 is an independent predictor of CV mortality in maintenance HD patients.
Subject(s)
Cardiovascular Diseases/mortality , Cause of Death , Galectin 3/blood , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Renal Dialysis , Aged , Biomarkers/blood , Cardiovascular Diseases/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Renal Dialysis/adverse effectsABSTRACT
Herein, Na+ and Ca2+ are introduced to MnO2 through cation-exchange method. The presence of Na+ and Ca2+ significantly enhance the catalytic activity of MnO2 in toluene oxidation. Among them, the Ca-MnO2 catalyst exhibits the best catalytic activity (T50 = 194°C, T90 = 215°C, Ea = 57.2 kJ/mol, reaction rate 8.40 × 10-10 mol/(secâ m2) at 210°C. T50 and T90: the temperature of 50% and 90% toluene conversion; Ea: apparent activation energy) and possess high tolerance against 2.0 vol.% water vapor. Results reveal that the increased acidic sites of the MnO2 sample can enhance the adsorption of gaseous toluene, and the mobility of oxygen species and the content of reactive oxygen species in the catalyst are significantly improved due to the formed oxygen vacancy. Thus these two factors result in excellent catalytic performance for toluene oxidation combining with the weak CO2 adsorption ability.
Subject(s)
Manganese Compounds , Toluene , Catalysis , Metals, Alkaline Earth , Oxidation-Reduction , OxidesABSTRACT
Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.
Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , China , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Philadelphia , Pneumonia/diagnostic imaging , Radiography, Thoracic , Radiologists/standards , Radiologists/statistics & numerical data , Retrospective Studies , Rhode Island , SARS-CoV-2 , Sensitivity and Specificity , Young AdultABSTRACT
Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. Two hundred five patients with positive respiratory pathogen panel results for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia, according to original radiologic interpretation within 7 days of each other, were identified from Rhode Island Hospital in Providence, RI. Three radiologists from China reviewed all chest CT scans (n = 424) blinded to RT-PCR findings to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched patients was randomly selected and evaluated by four radiologists from the United States in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CT scans (n = 424), the accuracy of the three radiologists from China in differentiating COVID-19 from non-COVID-19 viral pneumonia was 83% (350 of 424), 80% (338 of 424), and 60% (255 of 424). In the randomly selected sample (n = 58), the sensitivities of three radiologists from China and four radiologists from the United States were 80%, 67%, 97%, 93%, 83%, 73%, and 70%, respectively. The corresponding specificities of the same readers were 100%, 93%, 7%, 100%, 93%, 93%, and 100%, respectively. Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترج٠٠ÚÚ©Ûد٠اÛÙ Ù ÙاÙ٠ب٠ÙارسÛØ Ø¯Ø± ض٠ÛÙ Ù Ù ÙجÙد است.
Subject(s)
Betacoronavirus , Clinical Competence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists/standards , Adult , Aged , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Predictive Value of Tests , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed/methodsABSTRACT
BACKGROUND: The purpose of this study was to explore the effect of changing treatment to high-flux hemodialysis (HFHD) on mortality rate in patients with long-term low flux hemodialysis (LFHD). METHODS: The patients with end-stage renal disease (ESRD) who underwent LFHD with dialysis age more than 36 months and stable condition in our hospital before December 31, 2014 were included in this study. They were divided into control group and observation group. Propensity score matched method was used to select patients in the control group. The hemodialysis was performed 3 times a week for 4 h. The deadline for follow-up is December 31, 2018. End-point event is all-cause death. The survival rates of the two groups were compared and multivariate Cox regression analysis was carried out. RESULTS: K-M survival analysis showed that the 1-year, 2-year, 3-year and 4-year survival rates of HFHD group were 98, 96, 96 and 96%, respectively. The 1-year, 2-year, 3-year and 4-year survival rates of LFHD group were 95, 85, 80 and 78%, respectively. Log-rank test showed that the survival rate of HFHD group was significantly higher than that of LFHD group (x2= 7.278, P = 0.007). Multivariate Cox regression analysis showed that male, age, hemoglobin and low-throughput dialysis were independent predictors of death (P < 0.05). Compared with LFHD, HFHD can significantly reduce the mortality risk ratio of patients, as high as 86%. CONCLUSION: The prognosis of patients with ESRD who performed long-term LFHD can be significantly improved after changing to HFHD.
Subject(s)
Kidney Failure, Chronic/mortality , Renal Dialysis/methods , Cohort Studies , Female , Humans , Kidney Failure, Chronic/therapy , Male , Middle Aged , Prognosis , Propensity Score , Proportional Hazards Models , Renal Dialysis/mortalityABSTRACT
Rod-like, hexagonal and fiber-like SBA-15 mesoporous silicas were synthesized to support MnOx for toluene oxidation. This study showed that the morphology of the supports greatly influenced the catalytic activity in toluene oxidation. MnOx supported on rod-like SBA-15 (R-SBA-15) displayed the best catalytic activity and the conversion at 230°C reached more than 90%, which was higher than the other two catalysts. MnOx species consisted of coexisting MnO2 and Mn2O3 on the three kinds of SBA-15 samples. Large amounts of Mn2O3 species were formed on the surface and high oxygen mobility was obtained on MnOx supported on R-SBA-15, according to the H2 temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) results. The Mn/R-SBA-15 catalyst with greater amounts of Mn2O3 species possessed a large amount of surface lattice oxygen, which accelerated the catalytic reaction rate. Therefore, the surface lattice oxygen and high oxygen mobility were critical factors on the catalytic activity of the Mn/R-SBA-15 catalyst.
Subject(s)
Magnesium Oxide/chemistry , Silicon Dioxide/chemistry , Toluene/chemistry , Adsorption , Catalysis , Oxidation-ReductionABSTRACT
Migraine is a common neurological disorder with a serious impact on quality of life. The aim of this study was to explore the effect of baicalin on nitroglycerin-induced migraine rats. We carried out a behavioral research within 2 h post-nitroglycerin injection, and blood samples were drawn for measurements of nitric oxide (NO), calcitonin gene-related peptide, and endothelin (ET) levels. Immunohistochemistry was adopted to detect the activation of C-fos immunoreactive neurons in periaqueductal gray. The number, area size, and integrated optical density of C-fos positive cells were measured using Image-Pro Plus. As a result, baicalin administration (0.22 mm/kg) alleviated pain responses of migraine rats. It profoundly decreased NO and calcitonin gene-related peptide levels, increased ET levels, and rebuilt the NO/ET balance in migraine rats. Besides, baicalin pretreatment significantly reduced the number, the stained area size, and integrated optical density value of C-fos positive cells. In brief, this paper supports the possibility of baicalin as a potential migraine pharmacotherapy. Copyright © 2017 John Wiley & Sons, Ltd.
Subject(s)
Flavonoids/pharmacology , Migraine Disorders/drug therapy , Nitroglycerin/adverse effects , Trigeminal Caudal Nucleus/drug effects , Animals , Calcitonin Gene-Related Peptide/metabolism , Endothelins/metabolism , Female , Male , Migraine Disorders/chemically induced , Neurons/drug effects , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-DawleyABSTRACT
Melatonin (Mel) is recognized as a prominent plant growth regulator. This study investigated the alleviating effect of Mel pretreatment on growth inhibition caused by low-temperature (LT) stress (10 °C/6 °C) in cucumber seedlings and explored the role of the Ca2+/Calcium-dependent protein kinases (CPKs) signaling pathway in Mel-regulated LT tolerance. The main results are as follows: compared to LT treatment alone, 100 µM Mel increased both the content of Ca2+ (highest about 42.01%) and the expression levels of Ca2+ transporter and cyclic nucleotide-gated channel (CNGC) genes under LT. Similarly, Mel enhanced the content of CPKs (highest about 27.49%) and the expression levels of CPKs family genes in cucumber leaves under LT. Additionally, pretreatment with 100 µM Mel for three days strengthened the antioxidant defense and photosynthesis of seedlings under LT. Genes in the ICE-CBF-COR pathway and the MAPK cascade were upregulated by Mel, with maximum upregulations reaching approximately 2.5-fold and 1.9-fold, respectively, thus conferring LT tolerance to cucumber seedlings. However, the above beneficial effects of Mel were weakened by co-treatment with calcium signaling blockers (LaCl3 or EGTA) or CPKs inhibitors (TFP or W-7), suggesting that the Ca2+/CPKs pathway is involved in the Mel-mediated regulation of LT tolerance. In conclusion, this study revealed that Mel can alleviate growth inhibition in cucumber seedlings under LT stress and demonstrated that the Ca2+/CPKs signaling pathway is crucial for the Mel-mediated enhancement of LT tolerance. The findings hold promise for providing theoretical insights into the application of Mel in agricultural production and for investigating its underlying mechanisms of action.
Subject(s)
Cold Temperature , Cucumis sativus , Melatonin , Plant Proteins , Seedlings , Signal Transduction , Cucumis sativus/drug effects , Cucumis sativus/genetics , Cucumis sativus/metabolism , Cucumis sativus/growth & development , Melatonin/pharmacology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Gene Expression Regulation, Plant/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Photosynthesis/drug effectsABSTRACT
Low temperature (LT) is an important environmental factor affecting the growth and yield of plants. Melatonin (MT) can effectively enhance the LT tolerance of cucumber. This study found that LT stress induced the expression of Comt1 (caffeic acid O-methyltransferase 1), with the highest expression being about 2-times that of the control. Meanwhile, the content of MT was found to be roughly 63.16% of that in the control samples. Compared with LT treatment alone, exogenous MT pretreatment upregulated the expression levels of TOR (Target of rapamycin), PIN1 (Pin-formed 1), and YUC4 (YUCCA 4), with maximum upregulations reaching approximately 66.67%, 79.32%, and 42.86%, respectively. These results suggest that MT may modulate the tolerance of cucumber seedlings to LT stress by regulating the expression of TOR, PIN1, and YUC4. In addition, co-treatment with AZD-8055 (a TOR inhibitor) or NPA (N-1-naphthylphthalamic acid, an auxin polar transport inhibitor) and MT attenuated MT-induced resistance to LT stress, leading to higher levels of reactive oxygen species (ROS), reduced antioxidant defense capacity, and increased damage to the membrane system in cucumber seedlings. Concurrently, the content of osmoregulatory substances and the photosynthesis decreased. These results demonstrate that both TOR and auxin were required for MT to alleviate LT-induced damage in cucumber. In summary, the present study demonstrates that TOR and auxin signaling synergistically contribute to alleviating LT damage in cucumber seedlings by exogenous MT. These findings help us understand the function of MT and provide insights into the regulatory network of MT that regulates the LT tolerance of plants.