Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Small ; : e2404808, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136428

ABSTRACT

The construction of crystalline metal-organic frameworks with regular architectures supportive of enhanced mass transport and bubble diffusion is imperative for electrocatalytic applications; however, this poses a formidable challenge. Here, a method is presented that confines the growth of nano-architectures to the liquid-liquid interface. Using this method, vertically oriented single crystalline nanowire arrays of an Ag-benzenehexathiol (BHT) conductive metal-organic framework (MOF) are fabricated via an "in-plane self-limiting and out-of-plane epitaxial growth" mechanism. This material has excellent electrocatalytic features, including highly exposed active sites, intrinsically high electrical conductivity, and superhydrophilic and superaerophobic properties. Leveraging these advantages, the carefully designed material demonstrates superior electrocatalytic hydrogen evolution activity, resulting in a low Tafel slope of 66 mV dec-1 and a low overpotential of 275 mV at a high current density of 1 A cm-2. Finite element analysis (FEA) and in situ microscopic verification indicates that the nanowire array structure significantly enhances the electrolyte transport kinetics and promotes the rapid release of gas bubbles. The findings highlight the potential of using MOF-based ordered nanoarray structures for advanced electrocatalytic applications.

2.
Small ; 19(45): e2302913, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37442790

ABSTRACT

The synthesis of large-scale 2D conductive metal-organic framework films with tunable thickness is highly desirable but challenging. In this study, an Interface Confinement Self-Assembly Pulling (ICSP) method for in situ synthesis of 4-in. Ni-BHT film on the substrate surface is developed. By modulating the thickness of the confined space, the thickness of Ni-BHT films could be easily varied from 4 to 42 nm. To eliminate interference factors and evaluate the effect of film thickness on the catalytic performance of HER, an electrocatalytic microdevice based on the Ni-BHT film is designed. The effective catalytic thickness of the Ni-BHT film is found to be around 32 nm. Finally, to prepare the electrocatalytic microdevice array, over 100 000 microdevices on a 4-in. Ni-BHT film are integrated. The results show that the microdevice array has good stability and a high hydrogen production rate and could be used to produce large amounts of hydrogen. The wafer-scale 2D conductive metal-organic framework's fabrication greatly advances the practical application of microdevices for massive hydrogen production.

3.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37009832

ABSTRACT

Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.

4.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679618

ABSTRACT

Uncertainty and nonlinearity in the depth control of remotely operated vehicles (ROVs) have been widely studied, especially in complex underwater environments. To improve the motion performance of ROVs and enhance their robustness, the model of ROV depth control in complex water environments was developed. The developed control scheme of interval type-2 fuzzy proportional-integral-derivative control (IT2FPID) is based on proportional-integral-derivative control (PID) and interval type-2 fuzzy logic control (IT2FLC). The performance indicators were used to evaluate the immunity of the controller type to external disturbances. The overshoot of 0.3% and settling time of 7.5 s of IT2FPID seem to be more robust compared to those of type-1 fuzzy proportional-integral-derivative (T1FPID) and PID.


Subject(s)
Algorithms , Fuzzy Logic , Computer Simulation
5.
J Org Chem ; 87(21): 13828-13836, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36278786

ABSTRACT

A kinetic-controlled photocatalyst-free visible-light-induced stereoselective synthesis of α,α-gem-difluoro-Z-allyl esters was succeeded at room temperature in moderate to excellent yields with up to Z-isomer-only stereoselectivities through a reductive radical ethoxycarbonyldifluoromethylation of terminal aryl alkynes with blue LED (465 nm)-excited Hantzsch ester. The geometry optimizations obtained by the DFT/B3LYP calculation with a standard 6-31G(d,p) basis set were also employed for the mechanism study on the formation of a key α,α-difluoroallyl ester radical intermediate, which was generated from the addition of the ethoxycarbonyldifluoromethyl radical to aryl alkyne substrates and the stabilization effect of the neighboring group. Subsequent steric hindrance-determined hydrogen generated from the Hantzsch ester radical cation led to the formation of final aryl-substituted Z-difluoroallyl esters. This methodology provided convenient access to the synthetically important Z-configured gem-difluoroallylic building blocks.

6.
Proc Natl Acad Sci U S A ; 116(45): 22526-22530, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31636209

ABSTRACT

The Earth's mantle transition zone (MTZ) is often considered an internal reservoir for water because its major minerals wadsleyite and ringwoodite can store several oceans of structural water. Whether it is a hydrous layer or an empty reservoir is still under debate. Previous studies suggested the MTZ may be saturated with iron metal. Here we show that metallic iron reacts with hydrous wadsleyite under the pressure and temperature conditions of the MTZ to form iron hydride or molecular hydrogen and silicate with less than tens of parts per million (ppm) water, implying that water enrichment is incompatible with iron saturation in the MTZ. With the current estimate of water flux to the MTZ, the iron metal preserved from early Earth could transform a significant fraction of subducted water into reduced hydrogen species, thus limiting the hydration of silicates in the bulk MTZ. Meanwhile, the MTZ would become gradually oxidized and metal depleted. As a result, water-rich region can still exist near modern active slabs where iron metal was consumed by reaction with subducted water. Heterogeneous water distribution resolves the apparent contradiction between the extreme water enrichment indicated by the occurrence of hydrous ringwoodite and ice VII in superdeep diamonds and the relatively low water content in bulk MTZ silicates inferred from electrical conductivity studies.

7.
Plant Dis ; 105(10): 2964-2969, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33761771

ABSTRACT

Rice sheath blight (SB) disease is a global issue that causes great yield losses each year. To explore whether SB field resistance can be predicted, 273 rice genotypes were inoculated and evaluated for SB field resistance across nine environments from 2012 to 2019 to identify loci associated with SB resistance by association mapping. A total of 80 significant marker-trait associations were detected in nine environments, among which six loci (D130B, D230A, D304B, D309, D427A, and RM409) were repeatedly detected in at least two environments. A linear regression model for predicting SB lesion length was developed using genotypic data of these six loci and SB field resistance data of the 273 rice genotypes: y = 34.44 - 0.56x, where y is the predicted value of lesion length, and x is the total genotypic value of the six loci. A recombinant inbred line (RIL) population consisting of 219 lines that was grown in six environments (from 2013 to 2018) for evaluation of SB field resistance was used to check the prediction accuracy of the prediction model. The average absolute error between the predicted lesion length and real lesion length for the RIL population was 6.67 cm. The absolute errors between predicted and real lesion lengths were <6 cm for 51.22% of the lines and <9 cm for 71.22% of the lines. An SB visual rating prediction model was also developed, and the average absolute error between the predicted visual rating and real visual rating for the RIL population was 0.94. These results indicated that the rice SB lesion length can be predicted by the development of a linear regression model using both genotypic and phenotypic data.


Subject(s)
Oryza , Genotype , Linear Models , Oryza/genetics , Phenotype , Plant Diseases
8.
J Clin Lab Anal ; 34(9): e23417, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32896958

ABSTRACT

BACKGROUND: In clinical practice, the cases with bacterial infection caused by titanium implants and bacterial biofilm formation on the surface of titanium materials implanted into human body can often be observed. Thus, this study aimed to demonstrate whether the mixed biofilm of Staphylococcus aureus/Escherichia coli can be formed on the surface of titanium material through in vitro experiments and its formation rules. METHODS: The titanium plates were put into the well containing S aureus or/and E coli. Bacterial adhesion and biofilm formation were analyzed by crystal violet, XTT method, confocal laser scanning microscopy, and scanning electron microscopy. RESULTS: The results of bacterial adhesion in each group at 6-72 hours showed that the number of bacterial adhesion in each group was increased with the extension of time and reached to the highest level at 72 hours. Moreover, the biofilm structure in the S aureus-E coli group was significantly more complex than that of the simple S aureus group or E coli group, and the number of bacteria was also significantly increased in the S aureus-E coli group. CONCLUSION: Those data provide a laboratory basis for the prevention and treatment of mixed infection of subsequent biological materials.


Subject(s)
Bacterial Adhesion , Biofilms/growth & development , Escherichia coli/growth & development , Gallium/chemistry , Nanotubes/chemistry , Staphylococcus aureus/growth & development , Titanium/pharmacology , Biofilms/drug effects , Escherichia coli/drug effects , Humans , Staphylococcus aureus/drug effects , Titanium/chemistry
9.
Tumour Biol ; 35(7): 7035-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752576

ABSTRACT

It is known that aquaporin 5 (AQP5) may represent a novel therapeutic target for treating colon cancer (CC), but whether AQP5 plays a role in the regulation of multidrug resistance (MDR) of colon cancer still remains unclear. In the present study, AQP5 and P-glycoprotein (P-gp), glutathione S-transferase-π (GST-π), topoisomerase II (TOPO II), and thymidylate synthase (TS) were checked in CC and adjacent cancer tissues; AQP5-siRNA was applied to silencing AQP5 in CC cell line HT-29, 5-fluorouracil (5-FU), and cisplatin (DDP) added on cells, and sulforhodamine B (SRB) was used; fluorescence real-time quantitative RT-PCR and Western blot were employed to detect changes in multidrug resistance factor and expression mitogen-activated protein kinase (MAPK) signaling pathway in HT-29. The results showed that AQP5 is significantly induced in cancer tissues than that in adjacent cancer tissues. The expression of AQP5 is positively correlated with drug resistance factors, as demonstrated by the increased expressions of P-gp, GST-π, and TOPO II in CC tissues compared to that in adjacent cancer tissues. Conversely, knockdown of AQP5 in HT-29 human colon cancer cells increased inhibition rates of cancer chemotherapeutic drugs such as 5-FU and DDP. The improved efficacies of chemotherapeutic drugs are associated with the decreased expression of P-gp, GST-π, and TOPO II. In addition, phosphorylation of p38 MAPK was increased by knockdown of AQP5 in HT-29 cells while phosphorylation and expression of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and Protein kinase B (AKT) were not affected. P38 MAPK inhibitor increased the drug sensitivity of HT-29 cells in a similar way as AQP5-siRNAs do. So these results indicate that AQP5 is associated with drug resistance of colon cancer, and that the AQP5-P38 MAPK pathway may represent a potential drug target to improve drug resistance of colon cancer cells.


Subject(s)
Aquaporin 5/genetics , Colonic Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Aquaporin 5/metabolism , Cisplatin/administration & dosage , Colonic Neoplasms/pathology , DNA Topoisomerases, Type II/biosynthesis , Fluorouracil/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , HT29 Cells , Humans , Organic Anion Transporters/biosynthesis , Signal Transduction/drug effects , Thymidylate Synthase/biosynthesis , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Chem Commun (Camb) ; 60(53): 6789-6792, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38868985

ABSTRACT

A new narrowband thermally activated delayed fluorescence emitter, PhCzBN-PO, was developed by incorporating the diphenylphosphine oxide (DPPO) group into a multi-resonance core. The unique properties of DPPO enabled PhCzBN-PO to achieve pure green emission and a nonplanar structure. The resulting electroluminescent devices achieved high external quantum efficiencies up to 32.4% with extremely low efficiency roll-off and pure-green emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.24, 0.67).

11.
Sci Rep ; 14(1): 7042, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528074

ABSTRACT

In China, traditional medications for osteoporosis have significant side effects, low compliance, and high costs, making it urgent to explore new treatment options. Probiotics have demonstrated superiority in the treatment of various chronic diseases, and the reduction of bone mass in postmenopausal osteoporosis (PMOP) is closely related to the degradation and metabolism of intestinal probiotics. It is crucial to explore the role and molecular mechanisms of probiotics in alleviating PMOP through their metabolites, as well as their therapeutic effects. We aim to identify key probiotics and their metabolites that affect bone loss in PMOP through 16srDNA sequencing combined with non-targeted metabolomics sequencing, and explore the impact and possible mechanisms of key probiotics and their metabolites on the progression of PMOP in the context of osteoporosis caused by estrogen deficiency. The sequencing results showed a significant decrease in Lactobacillus acidophilus and butyrate in PMOP patients. In vivo experiments confirmed that the intervention of L. acidophilus and butyrate significantly inhibited osteoclast formation and bone resorption activity, improved intestinal barrier permeability, suppressed B cells, and the production of RANKL on B cells, effectively reduced systemic bone loss induced by oophorectomy, with butyric acid levels regulated by L. acidophilus. Consistently, in vitro experiments have confirmed that butyrate can directly inhibit the formation of osteoclasts and bone resorption activity. The above research results indicate that there are various pathways through which L. acidophilus inhibits osteoclast formation and bone resorption activity through butyrate. Intervention with L. acidophilus may be a safe and promising treatment strategy for osteoclast related bone diseases, such as PMOP.


Subject(s)
Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Probiotics , Female , Humans , Osteoclasts/metabolism , Osteoporosis, Postmenopausal/etiology , Lactobacillus acidophilus , Butyrates/metabolism , Osteoporosis/metabolism , Bone Resorption/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Cell Differentiation , Ovariectomy/adverse effects
12.
Int J Biol Macromol ; 258(Pt 1): 128950, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143068

ABSTRACT

Resveratrol (RES) is a functional polyphenol that suffers from low water solubility and poor bioavailability. A novel RES-loaded soy protein isolate-dipotassium glycyrrhizinate (SPI-DG) nanocomplex (RES@SPI-DG) was designed and evaluated in this study. RES@SPI-DG was prepared using a simple but novel self-assembly ultrasonic-assisted pH-driven method. The interactions between RES and SPI-DG were non-covalent bonds, including hydrophobic interactions, hydrogen bonds, and van der Waals interactions. RES@SPI-DG exhibited high encapsulation efficiency (97.60 ± 0.38 %) and loading capacity (8.74 ± 0.03 %) of RES with a uniform small size (68.39 ± 1.10 nm). RES in RES@SPI-DG was in an amorphous state and demonstrated a 24-h apparent solubility 482.53-fold higher than bare RES. RES@SPI-DG also showed strong in vitro antioxidant properties. The pH-responsive hydrogel character of SPI-DG makes it an effective intestine-targeted delivery system that could retard the release of RES in a simulated stomach and accelerate it in a simulated intestine. In animal experiments, the bioavailability of RES@SPI-DG was 5.17 times higher than that of bare RES, and the biodistribution was also significantly improved. RES@SPI-DG demonstrated a strong hepatoprotective effect against overdose acetaminophen-induced liver injury. The SPI-DG complex might be a promising nano-platform for enhancing the bioavailability and efficacy of hydrophobic polyphenols such as RES.


Subject(s)
Glycyrrhizic Acid , Soybean Proteins , Animals , Resveratrol , Soybean Proteins/chemistry , Hydrogels , Biological Availability , Tissue Distribution , Particle Size , Hydrogen-Ion Concentration
13.
Neuroscience ; 556: 73-85, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39084457

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the molecular mechanism of exosomal miR-219-5p derived from bone marrow mesenchymal stem cells (BMSCs) in the treatment of spinal cord injury (SCI). METHODS: Basso Beattie Bresnahan (BBB) score and tissue staining were used to assess SCI and neuronal survival in rats. The contents of Fe2+, malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected by a kit. The expression levels of ubiquitin-conjugating enzyme E2 Z (UBE2Z), nuclear factor erythroid 2-related Factor 2 (NRF2) and ferroptosis-related proteins were detected by Western blotting. In addition, the ability of BMSC-derived exosomes to inhibit ferroptosis in neuronal cells in rats with SCI was validated by in vivo injection of ferroptosis inhibitors/inducers. RESULTS: In this study, we found that miR-219-5p-rich BMSC-derived exosomes inhibited ferroptosis in SCI rats and that the alleviating effect of BMSC-Exos on SCI was achieved by inhibiting the ferroptosis signaling pathway and that NRF2 played a key role in this process. Our study confirmed that BMSC exosome-specific delivery of miR-219-5p can target UBE2Z to regulate its stability and that overexpression of UBE2Z reverses miR-219-5p regulation of NRF2. In addition, in vivo experiments showed that BMSC exosomes alleviated ferroptosis in neuronal SCI progression, and inhibiting the expression of miR-219-5p in BMSCs reduced the alleviating effect of exosomes on ferroptosis in neuronal cells and SCI. CONCLUSION: miR-219-5p in BMSC-derived exosomes can repair the injured spinal cord. In addition, miR-219-5p alleviates ferroptosis in neuronal cells induced by SCI through the UBE2Z/NRF2 pathway.


Subject(s)
Exosomes , Ferroptosis , Mesenchymal Stem Cells , MicroRNAs , NF-E2-Related Factor 2 , Neurons , Signal Transduction , Spinal Cord Injuries , Animals , Male , Rats , Exosomes/metabolism , Ferroptosis/physiology , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Neurons/metabolism , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , Signal Transduction/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics
14.
ACS Omega ; 9(1): 781-797, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222662

ABSTRACT

Glial scarring formed by reactive astrocytes after spinal cord injury (SCI) is the primary obstacle to neuronal regeneration within the central nervous system, making them a promising target for SCI treatment. Our previous studies have demonstrated the positive impact of miR-124-3p on neuronal repair, but it remains unclear how miR-124-3p is involved in autophagy or ER stress in astrocyte activation. To answer this question, the expression of A1 astrocyte-related markers at the transcriptional and protein levels after SCI was checked in RNA-sequencing data and verified using quantitative polymerase chain reaction (qPCR) and Western blotting in vitro and in vivo. The potential interactions among circHIPK2, miR-124-3p, and Smad2 were analyzed and confirmed by bioinformatics analyses and a luciferase reporter assay. In the end, the role of miR-124-3p in autophagy, ER stress, and SCI was investigated by using Western blotting to measure key biomarkers (C3, LC3, and Chop) in the absence or presence of corresponding selective inhibitors (siRNA, 4-PBA, TG). As a result, SCI caused the increase of A1 astrocyte markers, in which the upregulated circHIPK2 directly targeted miR-124-3p, and the direct downregulating effect of Smad2 by miR-124-3p was abolished, while Agomir-124 treatment reversed this effect. Injury caused a significant change of markers for ER stress and autophagy through the circHIPK2/miR-124-3p/Smad2 pathway, which might activate the A1 phenotype, and ER stress might promote autophagy in astrocytes. In conclusion, circHIPK2 may play a functional role in sequestering miR-124-3p and facilitating the activation of A1 astrocytes through regulating Smad2-mediated downstream autophagy and ER stress pathways, providing a new perspective on potential targets for functional recovery after SCI.

15.
Front Psychol ; 14: 1148391, 2023.
Article in English | MEDLINE | ID: mdl-37284478

ABSTRACT

Purpose: Research on painting therapy is available worldwide and painting therapy is widely applied as a psychological therapy in different fields with diverse clients. As an evidence-based psychotherapy, previous studies have revealed that painting therapy has favorable therapeutic effects. However, limited studies on painting therapy used universal data to assemble in-depth evidence to propose a better recommendation on it for the future use. Large-scale retrospective studies that used bibliometric methodology are lacking. Therefore, this study presented a broad view of painting therapy and provided an intensively analytical insight into the structure of knowledge regarding painting therapy employing bibliometric analysis of articles. CiteSpace software was used to evaluate scientific research on painting therapy globally published from January 2011 to July 2022. Methods: Publications related to painting therapy from 2011 to 2022 were searched using the Web of Science database. This study employed bibliometric techniques to perform co-citation analysis of authors, visualize collaborations between countries/regions as network maps, and analyze keywords and subjects relevant to painting therapy by using CiteSpace software. Results: In total, 871 articles met the inclusion criteria. We found that the number of painting therapy publications generally trended incrementally. The United States and United Kingdom made the most contributions to painting therapy research and had the greatest impact on the practical application in other countries. Arts in Psychotherapy and Frontiers in Psychology occupied key publishing positions in this research field. The application groups were mainly children, adolescents, and females, and Western countries paid high attention to painting therapy. The main areas of application of painting therapy were Alzheimer's disease and other psychosomatic disease fields. Identified research priorities for painting therapy were emotion regulation and mood disorder treatment, personality disorder treatment, personal self-esteem enhancement, and medical humanistic care. Three keywords, "depression," "women," and "recovery," had the strongest citation bursts, which emphasized the research trends. Conclusion: The general trend for painting therapy research is positive. Our findings provide useful information for researchers on painting therapy to determine new directions in relate to popular issues, collaborators, and research frontiers. Painting therapy holds a promising future, and further studies could explore the clinical implications of this therapy in terms of mechanisms and criteria for assessing efficacy.

16.
Biochem Biophys Rep ; 35: 101547, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37745985

ABSTRACT

The current study aimed to investigate the antitumor effects and potent mechanism of cytokine-induced killer (CIK) cells combined with irreversible electroporation (IRE) via Panc02 cell-bearing mouse model in vivo. CIK cells were isolated from the spleens of Panc02 pancreatic-cancer (PC) subcutaneous-xenograft model and the proportion of different lymphocytes was also determined. The antitumor effect of the combination of IRE and CIK cells in a PC subcutaneous-xenograft model was also investigated. The proportion of cells that were positive for CD3+CD8+ and the proportion of CD3+CD56+ cells were both significantly increased after 21 days of in vitro culture. Combined treatment of IRE and CIK cell significantly inhibited tumor growth and increased the survival rate of Panc02 cell-bearing mice. Furthermore, infiltration of lymphocytes into tumor tissue was significantly increased by this combination therapy compared with the untreated group or monotherapy group. In addition, IRE significantly enhanced the expression of chemokine receptors elicited by CIK cells. In conclusion, IRE combined with CIK cells showed superior antitumor efficacy in a PC xenograft model, which we attributed to the promotion of lymphocytic infiltration, as well as to upregulation of chemokine receptor expression and the regulators of CIK cell proliferation.

17.
Heliyon ; 9(7): e17852, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37455998

ABSTRACT

Spinal cord injury (SCI) has a high disability rate and mortality rate. Recently, LncRNA XIST has been found to be involved in the regulation of inflammatory responses. Therefore, we aimed to investigate the role of XIST in the occurrence and development of SCI and the specific regulation mechanism. Methods: 100 ng/mL lipopolysaccharide (LPS) was used to treat mouse microglia BV2 cells. Hitting spinal cord was performed to C57BL/6 mice for establishing SCI model. Real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), Western blot, Immunofluorescence (IF) and Enzyme linked immunosorbent assay (ELISA) experiments were used to explore the function of XIST, miR-124-3p and IRF1 in LPS-induced BV2 cells. RT-qPCR, Nissl staining, IF, Western blot and ELISA experiment were performed to study the function of XIST in SCI mice. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP), RT-qPCR and Western blot assays were utilized to identify the interaction among XIST, miR-124-3p and IRF1. Results: XIST was upregulated in LPS-induced BV2 cells and spinal cord tissues of SCI mice. Overexpression of XIST promoted the M1 microphages polarization and cytokines concentration in LPS-stimulated BV2 cells, aggravated SCI of mice. Downregulated XIST promoted M1-to-M2 conversion of microglial and relieved the injury of SCI mice. Mechanism verification indicated that XIST acted as a molecular sponge of miR-124-3p and regulated IRF1 expression. Increased miR-124-3p or reduced IRF1 inhibited M1 polarization of microglial and decreased the production of inflammatory cytokines in LPS-induced BV2 cells. Increased XIST or decreased miR-124-3p had an opposite of on LPS-induced BV2 cells. Conclusion: Overexpression of XIST enhanced M1 polarization of microglia and promoted the level of inflammatory cytokines through sponging miR-124-3p and regulating IRF1 expression.

18.
Braz J Cardiovasc Surg ; 38(6): e20220260, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801489

ABSTRACT

INTRODUCTION: Thoracic aortic aneurysm is a potentially fatal disease with a strong genetic contribution. The dysfunction of vascular smooth muscle cells (VSMCs) contributes to the formation of this aneurysm. Although previous studies suggested that long non-coding ribonucleic acid (RNA) hypoxia inducible factor 1 α-antisense RNA 1 (HIF1A-AS1) exerted a vital role in the progression and pathogenesis of thoracic aortic aneurysm, we managed to find a new regulatory mechanism of HIF1A-AS1 in VSMCs via transcriptomics. METHODS: Cell viability was detected by the cell counting kit-8 assay. Cell apoptosis was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Transwell migration assay and wound healing assay were performed to check the migration ability of HIF1A-AS1 on VSMCs. The NextSeq XTen system (Illumina) was used to collect RNA sequencing data. Lastly, reverse transcription-quantitative polymerase chain reaction confirmed the veracity and reliability of RNA-sequencing results. RESULTS: We observed that overexpressing HIF1A-AS1 successfully promoted apoptosis, significantly altered cell cycle distribution, and greatly attenuated migration in VSMCs, further highlighting the robust promoting effects of HIF1A-AS1 to thoracic aortic aneurysm. Moreover, transcriptomics was implemented to uncover its underlying mechanism. A total of 175 differently expressed genes were identified, with some of them enriched in apoptosis, migration, and cell cycle-related pathways. Intriguingly, some differently expressed genes were noted in vascular development or coagulation function pathways. CONCLUSION: We suggest that HIF1A-AS1 mediated the progression of thoracic aortic aneurysm by not only regulating the function of VSMCs, but also altering vascular development or coagulation function.


Subject(s)
Aortic Aneurysm, Thoracic , RNA, Long Noncoding , Humans , Aortic Aneurysm, Thoracic/genetics , MicroRNAs/genetics , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Reproducibility of Results , Transcriptome , RNA, Long Noncoding/metabolism
19.
Heliyon ; 9(1): e12696, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685425

ABSTRACT

Heated tobacco products (HTPs) are a novel type of cigarette that have received extensive attention. The tobacco plug could be made from tobacco granules (TGs), which are heated but not burned during the inhalation process. Thermal conductivity is an important property to evaluate the speed of heating TGs to meet the critical temperature for generating aerosol. Nevertheless, thermal physics properties of TGs is rarely reported. In this study, the thermophysical performance for the tobacco granules is systematically studied. An effective strategy of raising the thermal conductivity of TGs by introducing a small amount of nanoparticles of high-thermal-conductivity-materials (HTCMs, copper, silver, and graphene) is proposed, which not only results in a 35% improvement in the thermal conductivity but also reduces the maximum temperature for generating aerosol. In addition, introducing Cu and Ag particles in the TGs are favorable for improving the antibacterial effect. This method is worth promoting for enhancing the thermal conductivity of other plant-derived heated products.

20.
Sci Total Environ ; 882: 163544, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37076011

ABSTRACT

How would the organic gas emission inventories of future urban vehicles change with new features of advanced technology cars? Here, volatile organic compounds (VOCs) and intermediate volatile organic compounds (IVOCs) from a fleet of Chinese light-duty gasoline vehicles (LDGVs) were characterized by chassis dynamometer experiments to grasp the key factors affecting future inventory accuracy. Subsequently, the VOC and IVOC emissions of LDGVs in Beijing, China, from 2020 to 2035, were calculated and the spatial-temporal variations were recognized under a scenario of fleet renewal. With the tightening of emission standards (ESs), cold start contributed a larger fraction of the total unified cycle VOC emissions due to the imbalanced emission reductions between operating conditions. It took 757.47 ± 337.75 km of hot running to equal one cold-start VOC emission for the latest certified vehicles. Therefore, the future tailpipe VOC emissions would be highly dependent on discrete cold start events rather than traffic flows. By contrast, the equivalent distance was shorter and more stable for IVOCs, with an average of 8.69 ± 4.59 km across the ESs, suggesting insufficient controls. Furthermore, there were log-linear relationships between temperatures and cold-start emissions, and the gasoline direct-injection vehicles performed better adaptability under low temperatures. In the updated emission inventories, the VOC emissions were more effectively reduced than the IVOC emissions. The start emissions of VOCs were estimated to be increasingly dominant, especially in wintertime. By winter 2035, the contribution of VOC start emissions could reach 98.98 % in Beijing, while the fraction of IVOC start emissions would decrease to 59.23 %. Spatially allocation showed that the high emission regions of tailpipe organic gases from LDGVs have transferred from road networks to regions of intense human activities. Our results provide new insights into tailpipe organic gas emissions of gasoline vehicles, and can support future emission inventories and refined assessment of air quality and human health risk.

SELECTION OF CITATIONS
SEARCH DETAIL