Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Phytopathology ; 114(8): 1770-1781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38809607

ABSTRACT

Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum, leads to severe economic losses worldwide. Effective management measures for controlling FHB are not available due to a lack of resistant cultivars. Currently, the utilization of biological control is a promising approach that can be used to help manage FHB. Previous studies have confirmed that Streptomyces pratensis S10 harbors excellent inhibitory effects on F. graminearum. However, there is no information regarding whether invasive hyphae of F. graminearum are inhibited by S10. Thus, we investigated the effects of S10 on F. graminearum strain PH-1 hypha extension, toxisome formation, and TRI5 gene expression on wheat plants via microscopic observation. The results showed that S10 effectively inhibited the spread of F. graminearum hyphae along the rachis, restricting the infection of neighboring florets via the phloem. In the presence of S10, the hyphal growth is impeded by the formation of dense cell wall thickenings in the rachis internode surrounding the F. graminearum infection site, avoiding cell plasmolysis and collapse. We further demonstrated that S10 largely prevented cell-to-cell invasion of fungal hyphae inside wheat coleoptiles using a constitutively green fluorescence protein-expressing F. graminearum strain, PH-1. Importantly, S. pratensis S10 inhibited toxisome formation and TRI5 gene expression in wheat plants during infection. Collectively, these findings indicate that S. pratensis S10 prevents the spread of F. graminearum invasive hyphae via the rachis.


Subject(s)
Fusarium , Hyphae , Plant Diseases , Streptomyces , Triticum , Fusarium/physiology , Fusarium/pathogenicity , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/physiology , Streptomyces/genetics , Hyphae/growth & development
2.
Gerontology ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102786

ABSTRACT

INTRODUCTION: Malnutrition is common in older atrial fibrillation (AF) patients and results in poor clinical outcomes. The Geriatric Nutritional Risk Index (GNRI) is a straightforward method for evaluating nutritional health. However, its prognostic value in AF patients is unclear. This research focused on examining the correlation between GNRI and overall mortality in Chinese individuals with AF. METHODS: We performed a multicenter retrospective study at four Chinese hospitals involving patients diagnosed with AF between January 2019 and August 2023. Using GNRI, nutritional status was evaluated, classifying patients into three categories. Multivariable logistic regression and restricted cubic spline analysis assess the relationship between GNRI and mortality, with exploratory subgroup analyses investigating potential effect modifiers. RESULTS: The study included 4,878 AF patients with a median follow-up of 19 months. The mean age was 71 (63-78), and the mean GNRI was 102 (95-108). Malnutrition was identified in 1,776 patients (36.41%). During the study, 419 (8.59%) deaths occurred. After controlling for confounders, moderate to severe malnutrition was linked to an increased risk of all-cause mortality compared to no malnutrition (OR 1.50, 95% CI, 1.17-1.94). The relationship between GNRI and mortality risk was approximately linear, with consistent associations across subgroups. CONCLUSION: Malnutrition, as assessed by GNRI, is prevalent among Chinese AF patients and is independently linked to higher all-cause mortality risk.

3.
Reprod Toxicol ; 123: 108522, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096957

ABSTRACT

The endometrium undergoes dynamic changes throughout the menstrual cycle and pregnancy, which is unique to primates. Endometrium remodeling is essential for the implantation and nutritional support of the conceptus. Despite this, the role of uterine glands in driving endometrial tissue remodeling is still poorly understood. To address this, a 3-dimensional culture system was used to generate endometrial epithelial organoids from human endometrium biopsies. These organoids are genetically stable, long-term expandability. They reproduce some functions of uterine glands in vivo. The epithelial organoids exhibit characteristics of stem cells, with the proportion of stem cells increasing with culture time and passage number. Long-term maintenance of organoids strongly expressed stemness related genes accompanied by a decrease expression in mature epithelial gene, which suggests the organoids had switched from a mature stage to a progenitor stage. Thus we proposed the possible markers for epithelial progenitors. Meanwhile, long-term cultured organoids exhibit an increase in the proportion of luminal epithelial stem cells, accompanied by a decrease of glandular epithelial stem cells. Organoids also show hormone responsiveness, reflecting the various stages of the menstrual cycle and early pregnancy.


Subject(s)
Endometrium , Epithelial Cells , Pregnancy , Animals , Female , Humans , Epithelial Cells/metabolism , Menstrual Cycle , Organoids , Stem Cells
4.
Int J Biol Macromol ; 260(Pt 1): 129333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218279

ABSTRACT

Methylesterases (MES) are involved in hydrolysis of carboxylic esters, which have substantial roles in plant metabolic activities and defense mechanisms. This study aimed to comprehensively investigate Brassica napus BnMESs and characterize their role in response to Plasmodiophora brassicae stress. Forty-four BnMES members were identified and categorized into three groups based on their phylogenetic relationships and structural similarities. Through functional predictions in the promoter regions and analysis of RNA-Seq data, BnMES emerged as pivotal in growth, development, and stress responses to B. napus, particularly BnMES34, was strongly induced in response to P. brassicae infection. Gene Ontology analyses highlighted BnMES34's role in regulation of plant disease resistance responses. Furthermore, overexpression of BnMES34 in A. thaliana exhibited milder clubroot symptoms, and reduced disease indices, suggesting positive regulatory role of BnMES34 in plant's response to P. brassicae stress. Molecular docking and enzyme activity verification indicated that BnMES34 has the ability to generate salicylic acid via methyl salicylate, and further experimentally validated in vivo. This discovery indicates that the overexpression of BnMES34 in Arabidopsis confers resistance against clubroot disease. Overall, our research suggests that BnMES34 has a beneficial regulatory role in enhancing stress resistance to P. brassicae in B. napus.


Subject(s)
Arabidopsis , Plasmodiophorida , Arabidopsis/genetics , Arabidopsis/metabolism , Plasmodiophorida/metabolism , Phylogeny , Molecular Docking Simulation , Plant Diseases/genetics , Salicylic Acid/metabolism , Evolution, Molecular
5.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717972

ABSTRACT

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Subject(s)
Botrytis , Fragaria , Plant Proteins , Salicylates , Disease Resistance/genetics , Fragaria/enzymology , Fragaria/genetics , Fragaria/microbiology , Fruit/enzymology , Fruit/genetics , Fruit/microbiology , Gene Expression Regulation, Plant , Molecular Docking Simulation , Multigene Family , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylates/metabolism
6.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38503350

ABSTRACT

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Subject(s)
Acetates , Glial Cell Line-Derived Neurotrophic Factor , Halogenated Diphenyl Ethers , Phenols , Sertoli Cells , Mice , Animals , Male , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Testis/metabolism , Spermatogonia , Spermatogenesis , Tretinoin/metabolism , Tretinoin/pharmacology
7.
Environ Sci Pollut Res Int ; 31(9): 13856-13866, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265582

ABSTRACT

Exposure to silica nanoparticles (SiNPs) could causally contribute to malfunctioning of the spermatogenesis, but the underlying mechanism is rarely known. This study was designed to explore the mechanism of Crem hypermethylation in SiNP-induced reproductive toxicity. The male mice were exposure to SiNPs (0 and 20 mg/kg·bw) once every 5 days via intratracheal instillation for 35 days. After exposure stopped, half of each group was killed, and the rest were sacrificed after another 15-day feeding. GC-2 cells were treated with 0 and 20 µg/mL SiNPs. The results showed that SiNPs led to structure damage of spermatocyte and sperm, caused spermatocyte apoptosis, and decreased sperm quantity and quality. After 15 days of the withdrawal, the testicular tissue damage gradually recovered. Mechanistic study showed that SiNPs induced hypermethylation of the gene of cAMP responsive element modulator (Crem) in the promoter region. Downregulation of Crem inhibited the expression of outer dense fiber 1 (Odf1), resulting in abnormal sperm flagella structure; at the same time, Crem inhibited the expression of Bcl-xl, causing upregulation of cytochrome-C, cleaved-caspase-9/caspase-9, cleaved-caspase-3/caspase-3, resulting in mitochondrial dependent apoptotic pathway. However, 5-aza, DNA methylation inhibitor, could reverse the SiNP-induced downregulation of Crem and reverse the Crem/Bcl-xl-mediated mitochondrial dependent apoptotic pathway. These results suggested SiNPs could disrupt spermatogenesis by causing Crem hypermethylation to regulate the Odf1 and Bcl-xl in spermatocytes resulting in the sperm flagella structure and spermatocyte apoptosis. Our study provided new insights into the male reproductive toxicity mechanism of SiNPs; Crem demethylation may be a potential way to prevent reproductive dysfunction from SiNP exposure.


Subject(s)
Nanoparticles , Spermatocytes , Male , Animals , Mice , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/metabolism , Silicon Dioxide/chemistry , DNA Methylation , Semen/metabolism , Apoptosis/genetics , Spermatozoa/metabolism , Nanoparticles/toxicity , Nanoparticles/chemistry , Flagella/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL