Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lancet ; 403(10425): 439-449, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38262430

ABSTRACT

BACKGROUND: Drug-drug interactions (DDIs) can harm patients admitted to the intensive care unit (ICU). Yet, clinical decision support systems (CDSSs) aimed at helping physicians prevent DDIs are plagued by low-yield alerts, causing alert fatigue and compromising patient safety. The aim of this multicentre study was to evaluate the effect of tailoring potential DDI alerts to the ICU setting on the frequency of administered high-risk drug combinations. METHODS: We implemented a cluster randomised stepped-wedge trial in nine ICUs in the Netherlands. Five ICUs already used potential DDI alerts. Patients aged 18 years or older admitted to the ICU with at least two drugs administered were included. Our intervention was an adapted CDSS, only providing alerts for potential DDIs considered as high risk. The intervention was delivered at the ICU level and targeted physicians. We hypothesised that showing only relevant alerts would improve CDSS effectiveness and lead to a decreased number of administered high-risk drug combinations. The order in which the intervention was implemented in the ICUs was randomised by an independent researcher. The primary outcome was the number of administered high-risk drug combinations per 1000 drug administrations per patient and was assessed in all included patients. This trial was registered in the Netherlands Trial Register (identifier NL6762) on Nov 26, 2018, and is now closed. FINDINGS: In total, 10 423 patients admitted to the ICU between Sept 1, 2018, and Sept 1, 2019, were assessed and 9887 patients were included. The mean number of administered high-risk drug combinations per 1000 drug administrations per patient was 26·2 (SD 53·4) in the intervention group (n=5534), compared with 35·6 (65·0) in the control group (n=4353). Tailoring potential DDI alerts to the ICU led to a 12% decrease (95% CI 5-18%; p=0·0008) in the number of administered high-risk drug combinations per 1000 drug administrations per patient, after adjusting for clustering and prognostic factors. INTERPRETATION: This cluster randomised stepped-wedge trial showed that tailoring potential DDI alerts to the ICU setting significantly reduced the number of administered high-risk drug combinations. Our list of high-risk drug combinations can be used in other ICUs, and our strategy of tailoring alerts based on clinical relevance could be applied to other clinical settings. FUNDING: ZonMw.


Subject(s)
Critical Care , Decision Support Systems, Clinical , Ichthyosiform Erythroderma, Congenital , Lipid Metabolism, Inborn Errors , Muscular Diseases , Humans , Drug Combinations , Drug Interactions , Intensive Care Units , Adolescent , Adult
2.
Thorax ; 79(2): 120-127, 2024 01 18.
Article in English | MEDLINE | ID: mdl-37225417

ABSTRACT

BACKGROUND: The COVID-19 pandemic resulted in a large number of critical care admissions. While national reports have described the outcomes of patients with COVID-19, there is limited international data of the pandemic impact on non-COVID-19 patients requiring intensive care treatment. METHODS: We conducted an international, retrospective cohort study using 2019 and 2020 data from 11 national clinical quality registries covering 15 countries. Non-COVID-19 admissions in 2020 were compared with all admissions in 2019, prepandemic. The primary outcome was intensive care unit (ICU) mortality. Secondary outcomes included in-hospital mortality and standardised mortality ratio (SMR). Analyses were stratified by the country income level(s) of each registry. FINDINGS: Among 1 642 632 non-COVID-19 admissions, there was an increase in ICU mortality between 2019 (9.3%) and 2020 (10.4%), OR=1.15 (95% CI 1.14 to 1.17, p<0.001). Increased mortality was observed in middle-income countries (OR 1.25 95% CI 1.23 to 1.26), while mortality decreased in high-income countries (OR=0.96 95% CI 0.94 to 0.98). Hospital mortality and SMR trends for each registry were consistent with the observed ICU mortality findings. The burden of COVID-19 was highly variable, with COVID-19 ICU patient-days per bed ranging from 0.4 to 81.6 between registries. This alone did not explain the observed non-COVID-19 mortality changes. INTERPRETATION: Increased ICU mortality occurred among non-COVID-19 patients during the pandemic, driven by increased mortality in middle-income countries, while mortality decreased in high-income countries. The causes for this inequity are likely multi-factorial, but healthcare spending, policy pandemic responses, and ICU strain may play significant roles.


Subject(s)
COVID-19 , Pandemics , Humans , Retrospective Studies , COVID-19/epidemiology , COVID-19/therapy , Critical Care/methods , Intensive Care Units , Registries
3.
Crit Care Med ; 52(4): 574-585, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38095502

ABSTRACT

OBJECTIVES: Strain on ICUs during the COVID-19 pandemic required stringent triage at the ICU to distribute resources appropriately. This could have resulted in reduced patient volumes, patient selection, and worse outcome of non-COVID-19 patients, especially during the pandemic peaks when the strain on ICUs was extreme. We analyzed this potential impact on the non-COVID-19 patients. DESIGN: A national cohort study. SETTING: Data of 71 Dutch ICUs. PARTICIPANTS: A total of 120,393 patients in the pandemic non-COVID-19 cohort (from March 1, 2020 to February 28, 2022) and 164,737 patients in the prepandemic cohort (from January 1, 2018 to December 31, 2019). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Volume, patient characteristics, and mortality were compared between the pandemic non-COVID-19 cohort and the prepandemic cohort, focusing on the pandemic period and its peaks, with attention to strata of specific admission types, diagnoses, and severity. The number of admitted non-COVID-19 patients during the pandemic period and its peaks were, respectively, 26.9% and 34.2% lower compared with the prepandemic cohort. The pandemic non-COVID-19 cohort consisted of fewer medical patients (48.1% vs. 50.7%), fewer patients with comorbidities (36.5% vs. 40.6%), and more patients on mechanical ventilation (45.3% vs. 42.4%) and vasoactive medication (44.7% vs. 38.4%) compared with the prepandemic cohort. Case-mix adjusted mortality during the pandemic period and its peaks was higher compared with the prepandemic period, odds ratios were, respectively, 1.08 (95% CI, 1.05-1.11) and 1.10 (95% CI, 1.07-1.13). CONCLUSIONS: In non-COVID-19 patients the strain on healthcare has driven lower patient volume, selection of fewer comorbid patients who required more intensive support, and a modest increase in the case-mix adjusted mortality.


Subject(s)
COVID-19 , Pandemics , Humans , Patient Selection , Cohort Studies , Critical Care , Intensive Care Units , Retrospective Studies
4.
Crit Care Med ; 52(1): 125-135, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37698452

ABSTRACT

OBJECTIVES: Clinical quality registries (CQRs) have been implemented worldwide by several medical specialties aiming to generate a better characterization of epidemiology, treatments, and outcomes of patients. National ICU registries were created almost 3 decades ago to improve the understanding of case-mix, resource use, and outcomes of critically ill patients. This narrative review describes the challenges, proposed solutions, and evidence generated by National ICU registries as facilitators for research and quality improvement. DATA SOURCES: English language articles were identified in PubMed using phrases related to ICU registries, CQRs, outcomes, and case-mix. STUDY SELECTION: Original research, review articles, letters, and commentaries, were considered. DATA EXTRACTION: Data from relevant literature were identified, reviewed, and integrated into a concise narrative review. DATA SYNTHESIS: CQRs have been implemented worldwide by several medical specialties aiming to generate a better characterization of epidemiology, treatments, and outcomes of patients. National ICU registries were created almost 3 decades ago to improve the understanding of case-mix, resource use, and outcomes of critically ill patients. The initial experience in European countries and in Oceania ensured that through locally generated data, ICUs could assess their performances by using risk-adjusted measures and compare their results through fair and validated benchmarking metrics with other ICUs contributing to the CQR. The accomplishment of these initiatives, coupled with the increasing adoption of information technology, resulted in a broad geographic expansion of CQRs as well as their use in quality improvement studies, clinical trials as well as international comparisons, and benchmarking for ICUs. CONCLUSIONS: ICU registries have provided increased knowledge of case-mix and outcomes of ICU patients based on real-world data and contributed to improve care delivery through quality improvement initiatives and trials. Recent increases in adoption of new technologies (i.e., cloud-based structures, artificial intelligence, machine learning) will ensure a broader and better use of data for epidemiology, healthcare policies, quality improvement, and clinical trials.


Subject(s)
Critical Illness , Quality Improvement , Humans , Critical Illness/epidemiology , Critical Illness/therapy , Artificial Intelligence , Intensive Care Units , Registries
5.
Br J Clin Pharmacol ; 90(1): 164-175, 2024 01.
Article in English | MEDLINE | ID: mdl-37567767

ABSTRACT

AIMS: Knowledge about adverse drug events caused by drug-drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+ ) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. METHODS: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≥18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. RESULTS: In total 85 422 patients with ≥1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). CONCLUSION: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.


Subject(s)
Acute Kidney Injury , Drug-Related Side Effects and Adverse Reactions , Humans , Retrospective Studies , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/etiology , Drug Interactions , Intensive Care Units , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology
6.
Curr Opin Crit Care ; 30(3): 246-250, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38525882

ABSTRACT

PURPOSE OF REVIEW: This review explores recent key advancements in artificial intelligence for acute and intensive care medicine. As artificial intelligence rapidly evolves, this review aims to elucidate its current applications, future possibilities, and the vital challenges that are associated with its integration into emergency medical dispatch, triage, medical consultation and ICUs. RECENT FINDINGS: The integration of artificial intelligence in emergency medical dispatch (EMD) facilitates swift and accurate assessment. In the emergency department (ED), artificial intelligence driven triage models leverage diverse patient data for improved outcome predictions, surpassing human performance in retrospective studies. Artificial intelligence can streamline medical documentation in the ED and enhances medical imaging interpretation. The introduction of large multimodal generative models showcases the future potential to process varied biomedical data for comprehensive decision support. In the ICU, artificial intelligence applications range from early warning systems to treatment suggestions. SUMMARY: Despite promising academic strides, widespread artificial intelligence adoption in acute and critical care is hindered by ethical, legal, technical, organizational, and validation challenges. Despite these obstacles, artificial intelligence's potential to streamline clinical workflows is evident. When these barriers are overcome, future advancements in artificial intelligence have the potential to transform the landscape of patient care for acute and intensive care medicine.


Subject(s)
Artificial Intelligence , Critical Care , Triage , Humans , Artificial Intelligence/trends , Triage/methods , Emergency Service, Hospital/organization & administration , Intensive Care Units/organization & administration
7.
Am J Respir Crit Care Med ; 207(12): 1591-1601, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36790377

ABSTRACT

Rationale: Lung ultrasound (LUS) is a promising tool for diagnosis of acute respiratory distress syndrome (ARDS), but adequately sized studies with external validation are lacking. Objectives: To develop and validate a data-driven LUS score for diagnosis of ARDS and compare its performance with that of chest radiography (CXR). Methods: This multicenter prospective observational study included invasively ventilated ICU patients who were divided into a derivation cohort and a validation cohort. Three raters scored ARDS according to the Berlin criteria, resulting in a classification of "certain no ARDS," or "certain ARDS" when experts agreed or "uncertain ARDS" when evaluations conflicted. Uncertain cases were classified in a consensus meeting. Results of a 12-region LUS exam were used in a logistic regression model to develop the LUS-ARDS score. Measurements and Main Results: Three hundred twenty-four (16% certain ARDS) and 129 (34% certain ARDS) patients were included in the derivation cohort and the validation cohort, respectively. With an ARDS diagnosis by the expert panel as the reference test, the LUS-ARDS score, including the left and right LUS aeration scores and anterolateral pleural line abnormalities, had an area under the receiver operating characteristic (ROC) curve of 0.90 (95% confidence interval [CI], 0.85-0.95) in certain patients of the derivation cohort and 0.80 (95% CI, 0.72-0.87) in all patients of the validation cohort. Within patients who had imaging-gold standard chest computed tomography available, diagnostic accuracy of eight independent CXR readers followed the ROC curve of the LUS-ARDS score. Conclusions: The LUS-ARDS score can be used to accurately diagnose ARDS also after external validation. The LUS-ARDS score may be a useful adjunct to a diagnosis of ARDS after further validation, as it showed performance comparable with that of the current practice with experienced CXR readers but more objectifiable diagnostic accuracy at each cutoff.


Subject(s)
Lung , Respiratory Distress Syndrome , Humans , Lung/diagnostic imaging , Respiratory Distress Syndrome/diagnostic imaging , Ultrasonography , Thorax , Radiography
8.
BMC Health Serv Res ; 24(1): 708, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840245

ABSTRACT

BACKGROUND: Intensive Care Unit (ICU) capacity management is essential to provide high-quality healthcare for critically ill patients. Yet, consensus on the most favorable ICU design is lacking, especially whether ICUs should deliver dedicated or non-dedicated care. The decision for dedicated or non-dedicated ICU design considers a trade-off in the degree of specialization for individual patient care and efficient use of resources for society. We aim to share insights of a model simulating capacity effects for different ICU designs. Upon request, this simulation model is available for other ICUs. METHODS: A discrete event simulation model was developed and used, to study the hypothetical performance of a large University Hospital ICU on occupancy, rejection, and rescheduling rates for a dedicated and non-dedicated ICU design in four different scenarios. These scenarios either simulate the base-case situation of the local ICU, varying bed capacity levels, potential effects of reduced length of stay for a dedicated design and unexpected increased inflow of unplanned patients. RESULTS: The simulation model provided insights to foresee effects of capacity choices that should be made. The non-dedicated ICU design outperformed the dedicated ICU design in terms of efficient use of scarce resources. CONCLUSIONS: The choice to use dedicated ICUs does not only affect the clinical outcome, but also rejection- rescheduling and occupancy rates. Our analysis of a large university hospital demonstrates how such a model can support decision making on ICU design, in conjunction with other operation characteristics such as staffing and quality management.


Subject(s)
Intensive Care Units , Quality Improvement , Intensive Care Units/organization & administration , Humans , Computer Simulation , Hospitals, University , Length of Stay/statistics & numerical data , Decision Making , Decision Making, Organizational
9.
Eur Respir J ; 62(1)2023 07.
Article in English | MEDLINE | ID: mdl-37080568

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Biomarkers , Inflammation , Cytokines , Aging
10.
Crit Care ; 27(1): 321, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37605277

ABSTRACT

BACKGROUND: Thrombocytopenia, hemorrhage and platelet transfusion are common in patients supported with venoarterial extracorporeal membrane oxygenation (VA ECMO). However, current literature is limited to small single-center experiences with high degrees of heterogeneity. Therefore, we aimed to ascertain in a multicenter study the course and occurrence rate of thrombocytopenia, and to assess the association between thrombocytopenia, hemorrhage and platelet transfusion during VA ECMO. METHODS: This was a sub-study of a multicenter (N = 16) study on transfusion practices in patients on VA ECMO, in which a retrospective cohort (Jan-2018-Jul-2019) focusing on platelets was selected. The primary outcome was thrombocytopenia during VA ECMO, defined as mild (100-150·109/L), moderate (50-100·109/L) and severe (< 50·109/L). Secondary outcomes included the occurrence rate of platelet transfusion, and the association between thrombocytopenia, hemorrhage and platelet transfusion, assessed through mixed-effect models. RESULTS: Of the 419 patients included, median platelet count at admission was 179·109/L. During VA ECMO, almost all (N = 398, 95%) patients developed a thrombocytopenia, of which a significant part severe (N = 179, 45%). One or more platelet transfusions were administered in 226 patients (54%), whereas 207 patients (49%) suffered a hemorrhagic event during VA ECMO. In non-bleeding patients, still one in three patients received a platelet transfusion. The strongest association to receive a platelet transfusion was found in the presence of severe thrombocytopenia (adjusted OR 31.8, 95% CI 17.9-56.5). After including an interaction term of hemorrhage and thrombocytopenia, this even increased up to an OR of 110 (95% CI 34-360). CONCLUSIONS: Thrombocytopenia has a higher occurrence than is currently recognized. Severe thrombocytopenia is strongly associated with platelet transfusion. Future studies should focus on the etiology of severe thrombocytopenia during ECMO, as well as identifying indications and platelet thresholds for transfusion in the absence of bleeding. TRIAL REGISTRATION: This study was registered at the Netherlands Trial Registry at February 26th, 2020 with number NL8413 and can currently be found at https://trialsearch.who.int/Trial2.aspx?TrialID=NL8413.


Subject(s)
Extracorporeal Membrane Oxygenation , Thrombocytopenia , Humans , Platelet Transfusion/adverse effects , Extracorporeal Membrane Oxygenation/adverse effects , Retrospective Studies , Hemorrhage/etiology , Hemorrhage/therapy , Thrombocytopenia/complications , Thrombocytopenia/therapy
11.
BMC Med Ethics ; 24(1): 40, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291555

ABSTRACT

BACKGROUND: The COVID-19 pandemic causes moral challenges and moral distress for healthcare professionals and, due to an increased work load, reduces time and opportunities for clinical ethics support services. Nevertheless, healthcare professionals could also identify essential elements to maintain or change in the future, as moral distress and moral challenges can indicate opportunities to strengthen moral resilience of healthcare professionals and organisations. This study describes 1) the experienced moral distress, challenges and ethical climate concerning end-of-life care of Intensive Care Unit staff during the first wave of the COVID-19 pandemic and 2) their positive experiences and lessons learned, which function as directions for future forms of ethics support. METHODS: A cross-sectional survey combining quantitative and qualitative elements was sent to all healthcare professionals who worked at the Intensive Care Unit of the Amsterdam UMC - Location AMC during the first wave of the COVID-19 pandemic. The survey consisted of 36 items about moral distress (concerning quality of care and emotional stress), team cooperation, ethical climate and (ways of dealing with) end-of-life decisions, and two open questions about positive experiences and suggestions for work improvement. RESULTS: All 178 respondents (response rate: 25-32%) showed signs of moral distress, and experienced moral dilemmas in end-of-life decisions, whereas they experienced a relatively positive ethical climate. Nurses scored significantly higher than physicians on most items. Positive experiences were mostly related to 'team cooperation', 'team solidarity' and 'work ethic'. Lessons learned were mostly related to 'quality of care' and 'professional qualities'. CONCLUSIONS: Despite the crisis, positive experiences related to ethical climate, team members and overall work ethic were reported by Intensive Care Unit staff and quality and organisation of care lessons were learned. Ethics support services can be tailored to reflect on morally challenging situations, restore moral resilience, create space for self-care and strengthen team spirit. This can improve healthcare professionals' dealing of inherent moral challenges and moral distress in order to strengthen both individual and organisational moral resilience. TRIAL REGISTRATION: The trial was registered on The Netherlands Trial Register, number NL9177.


Subject(s)
COVID-19 , Pandemics , Humans , Cross-Sectional Studies , Attitude of Health Personnel , Stress, Psychological , COVID-19/epidemiology , Intensive Care Units , Morals , Surveys and Questionnaires , Death
12.
Euro Surveill ; 28(50)2023 12.
Article in English | MEDLINE | ID: mdl-38099348

ABSTRACT

BackgroundThe COVID-19 pandemic resulted in adaptation in infection control measures, increased patient transfer, high occupancy of intensive cares, downscaling of non-urgent medical procedures and decreased travelling.AimTo gain insight in the influence of these changes on antimicrobial resistance (AMR) prevalence in the Netherlands, a country with a low AMR prevalence, we estimated changes in demographics and prevalence of six highly resistant microorganisms (HRMO) in hospitalised patients in the Netherlands during COVID-19 waves (March-June 2020, October 2020-June 2021, October 2021-May 2022 and June-August 2022) and interwaves (July-September 2020 and July-September 2021) compared with pre-COVID-19 (March 2019-February 2020).MethodsWe investigated data on routine bacteriology cultures of hospitalised patients, obtained from 37 clinical microbiological laboratories participating in the national AMR surveillance. Demographic characteristics and HRMO prevalence were calculated as proportions and rates per 10,000 hospital admissions.ResultsAlthough no significant persistent changes in HRMO prevalence were detected, some relevant non-significant patterns were recognised in intensive care units. Compared with pre-COVID-19 we found a tendency towards higher prevalence of meticillin-resistant Staphylococcus aureus during waves and lower prevalence of multidrug-resistant Pseudomonas aeruginosa during interwaves. Additionally, during the first three waves, we observed significantly higher proportions and rates of cultures with Enterococcus faecium (pooled 10% vs 6% and 240 vs 120 per 10,000 admissions) and coagulase-negative Staphylococci (pooled 21% vs 14% and 500 vs 252 per 10,000 admissions) compared with pre-COVID-19.ConclusionWe observed no substantial changes in HRMO prevalence in hospitalised patients during the COVID-19 pandemic.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Netherlands/epidemiology , Prevalence , Pandemics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
13.
Crit Care Med ; 50(1): e1-e10, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34374504

ABSTRACT

OBJECTIVES: Obesity is a risk factor for severe coronavirus disease 2019 and might play a role in its pathophysiology. It is unknown whether body mass index is related to clinical outcome following ICU admission, as observed in various other categories of critically ill patients. We investigated the relationship between body mass index and inhospital mortality in critically ill coronavirus disease 2019 patients and in cohorts of ICU patients with non-severe acute respiratory syndrome coronavirus 2 viral pneumonia, bacterial pneumonia, and multiple trauma. DESIGN: Multicenter observational cohort study. SETTING: Eighty-two Dutch ICUs participating in the Dutch National Intensive Care Evaluation quality registry. PATIENTS: Thirty-five-thousand five-hundred six critically ill patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patient characteristics and clinical outcomes were compared between four cohorts (coronavirus disease 2019, nonsevere acute respiratory syndrome coronavirus 2 viral pneumonia, bacterial pneumonia, and multiple trauma patients) and between body mass index categories within cohorts. Adjusted analyses of the relationship between body mass index and inhospital mortality within each cohort were performed using multivariable logistic regression. Coronavirus disease 2019 patients were more likely male, had a higher body mass index, lower Pao2/Fio2 ratio, and were more likely mechanically ventilated during the first 24 hours in the ICU compared with the other cohorts. Coronavirus disease 2019 patients had longer ICU and hospital length of stay, and higher inhospital mortality. Odds ratios for inhospital mortality for patients with body mass index greater than or equal to 35 kg/m2 compared with normal weight in the coronavirus disease 2019, nonsevere acute respiratory syndrome coronavirus 2 viral pneumonia, bacterial pneumonia, and trauma cohorts were 1.15 (0.79-1.67), 0.64 (0.43-0.95), 0.73 (0.61-0.87), and 0.81 (0.57-1.15), respectively. CONCLUSIONS: The obesity paradox, which is the inverse association between body mass index and mortality in critically ill patients, is not present in ICU patients with coronavirus disease 2019-related respiratory failure, in contrast to nonsevere acute respiratory syndrome coronavirus 2 viral and bacterial respiratory infections.


Subject(s)
Body Mass Index , COVID-19/epidemiology , Hospital Mortality/trends , Obesity/epidemiology , Aged , COVID-19/mortality , Critical Illness , Female , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Multiple Trauma/epidemiology , Netherlands/epidemiology , Patient Acuity , Pneumonia, Bacterial/epidemiology , SARS-CoV-2
14.
Acta Anaesthesiol Scand ; 66(9): 1107-1115, 2022 10.
Article in English | MEDLINE | ID: mdl-36031794

ABSTRACT

BACKGROUND: COVID-19 patients were often transferred to other intensive care units (ICUs) to prevent that ICUs would reach their maximum capacity. However, transferring ICU patients is not free of risk. We aim to compare the characteristics and outcomes of transferred versus non-transferred COVID-19 ICU patients in the Netherlands. METHODS: We included adult COVID-19 patients admitted to Dutch ICUs between March 1, 2020 and July 1, 2021. We compared the patient characteristics and outcomes of non-transferred and transferred patients and used a Directed Acyclic Graph to identify potential confounders in the relationship between transfer and mortality. We used these confounders in a Cox regression model with left truncation at the day of transfer to analyze the effect of transfers on mortality during the 180 days after ICU admission. RESULTS: We included 10,209 patients: 7395 non-transferred and 2814 (27.6%) transferred patients. In both groups, the median age was 64 years. Transferred patients were mostly ventilated at ICU admission (83.7% vs. 56.2%) and included a larger proportion of low-risk patients (70.3% vs. 66.5% with mortality risk <30%). After adjusting for age, APACHE IV mortality probability, BMI, mechanical ventilation, and vasoactive medication use, the hazard of mortality during the first 180 days was similar for transferred patients compared to non-transferred patients (HR [95% CI] = 0.99 [0.91-1.08]). CONCLUSIONS: Transferred COVID-19 patients are more often mechanically ventilated and are less severely ill compared to non-transferred patients. Furthermore, transferring critically ill COVID-19 patients in the Netherlands is not associated with mortality during the first 180 days after ICU admission.


Subject(s)
COVID-19 , APACHE , Adult , COVID-19/therapy , Cohort Studies , Critical Illness , Hospital Mortality , Humans , Intensive Care Units , Middle Aged , Respiration, Artificial
15.
Acta Anaesthesiol Scand ; 66(1): 65-75, 2022 01.
Article in English | MEDLINE | ID: mdl-34622441

ABSTRACT

BACKGROUND: The prediction of in-hospital mortality for ICU patients with COVID-19 is fundamental to treatment and resource allocation. The main purpose was to develop an easily implemented score for such prediction. METHODS: This was an observational, multicenter, development, and validation study on a national critical care dataset of COVID-19 patients. A systematic literature review was performed to determine variables possibly important for COVID-19 mortality prediction. Using a logistic multivariable model with a LASSO penalty, we developed the Rapid Evaluation of Coronavirus Illness Severity (RECOILS) score and compared its performance against published scores. RESULTS: Our development (validation) cohort consisted of 1480 (937) adult patients from 14 (11) Dutch ICUs admitted between March 2020 and April 2021. Median age was 65 (65) years, 31% (26%) died in hospital, 74% (72%) were males, average length of ICU stay was 7.83 (10.25) days and average length of hospital stay was 15.90 (19.92) days. Age, platelets, PaO2/FiO2 ratio, pH, blood urea nitrogen, temperature, PaCO2, Glasgow Coma Scale (GCS) score measured within +/-24 h of ICU admission were used to develop the score. The AUROC of RECOILS score was 0.75 (CI 0.71-0.78) which was higher than that of any previously reported predictive scores (0.68 [CI 0.64-0.71], 0.61 [CI 0.58-0.66], 0.67 [CI 0.63-0.70], 0.70 [CI 0.67-0.74] for ISARIC 4C Mortality Score, SOFA, SAPS-III, and age, respectively). CONCLUSIONS: Using a large dataset from multiple Dutch ICUs, we developed a predictive score for mortality of COVID-19 patients admitted to ICU, which outperformed other predictive scores reported so far.


Subject(s)
COVID-19 , Adult , Aged , Critical Care , Hospital Mortality , Humans , Intensive Care Units , Male , Multicenter Studies as Topic , Observational Studies as Topic , Patient Acuity , Prognosis , Retrospective Studies , SARS-CoV-2
16.
Crit Care ; 25(1): 448, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34961537

ABSTRACT

INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records.


Subject(s)
Airway Extubation , COVID-19 , Treatment Failure , Adult , COVID-19/therapy , Critical Illness , Humans , Machine Learning
17.
Crit Care ; 25(1): 304, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34425864

ABSTRACT

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic has underlined the urgent need for reliable, multicenter, and full-admission intensive care data to advance our understanding of the course of the disease and investigate potential treatment strategies. In this study, we present the Dutch Data Warehouse (DDW), the first multicenter electronic health record (EHR) database with full-admission data from critically ill COVID-19 patients. METHODS: A nation-wide data sharing collaboration was launched at the beginning of the pandemic in March 2020. All hospitals in the Netherlands were asked to participate and share pseudonymized EHR data from adult critically ill COVID-19 patients. Data included patient demographics, clinical observations, administered medication, laboratory determinations, and data from vital sign monitors and life support devices. Data sharing agreements were signed with participating hospitals before any data transfers took place. Data were extracted from the local EHRs with prespecified queries and combined into a staging dataset through an extract-transform-load (ETL) pipeline. In the consecutive processing pipeline, data were mapped to a common concept vocabulary and enriched with derived concepts. Data validation was a continuous process throughout the project. All participating hospitals have access to the DDW. Within legal and ethical boundaries, data are available to clinicians and researchers. RESULTS: Out of the 81 intensive care units in the Netherlands, 66 participated in the collaboration, 47 have signed the data sharing agreement, and 35 have shared their data. Data from 25 hospitals have passed through the ETL and processing pipeline. Currently, 3464 patients are included in the DDW, both from wave 1 and wave 2 in the Netherlands. More than 200 million clinical data points are available. Overall ICU mortality was 24.4%. Respiratory and hemodynamic parameters were most frequently measured throughout a patient's stay. For each patient, all administered medication and their daily fluid balance were available. Missing data are reported for each descriptive. CONCLUSIONS: In this study, we show that EHR data from critically ill COVID-19 patients may be lawfully collected and can be combined into a data warehouse. These initiatives are indispensable to advance medical data science in the field of intensive care medicine.


Subject(s)
COVID-19/epidemiology , Critical Illness/epidemiology , Data Warehousing/statistics & numerical data , Electronic Health Records/statistics & numerical data , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , Critical Care , Humans , Netherlands
18.
BMC Psychiatry ; 20(1): 55, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32033603

ABSTRACT

BACKGROUND: The Delphi technique is a proven and reliable method to create common definitions and to achieve convergence of opinion. This study aimed to prioritize suicide prevention guideline recommendations and to develop a set of quality indicators (QIs) for suicide prevention in specialist mental healthcare. METHODS: This study selected 12 key recommendations from the guideline to modify them into QIs. After feedback from two face-to-face workgroup sessions, 11 recommendations were rephrased and selected to serve as QIs. Next, a Delphi study with the 11 QIs was performed to achieve convergence of opinion among a panel of 90 participants (23 suicide experts, 23 members of patients' advisory boards or experts with experiences in suicidal behavior and 44 mental healthcare professionals). The participants scored the 11 QIs on two selection criteria: relevance (it affects the number of suicides in the institution) and action orientation (institutions or professionals themselves can influence it) using a 5-point Likert scale. Also, data analysts working in mental healthcare institutions (MHIs) rated each QI on feasibility (is it feasible to monitor and extract from existing systems). Consensus was defined as 70% agreement with priority scores of four or five. RESULTS: Out of the 11 recommendations, participants prioritized five recommendations as relevant and action-oriented in optimizing the quality of care for suicide prevention: 1) screening for suicidal thoughts and behavior, 2) safety plan, 3) early follow-up on discharge, 4) continuity of care and 5) involving family or significant others. Only one of the 11 recommendations early follow-up on discharge reached consensus on all three selection criteria (relevance, action orientation, and feasibility). CONCLUSIONS: The prioritization of relevant and action-oriented suicide prevention guideline recommendations is an important step towards the improvement of quality of care in specialist mental healthcare.


Subject(s)
Mental Health Services/standards , Practice Guidelines as Topic/standards , Suicide Prevention , Suicide , Consensus , Delphi Technique , Humans , Quality Indicators, Health Care , Suicide/psychology
19.
Crit Care Med ; 47(3): 324-330, 2019 03.
Article in English | MEDLINE | ID: mdl-30768499

ABSTRACT

OBJECTIVES: To describe the types and prevalence of chronic conditions in an ICU population and a population-based control group during the year before ICU admission and to quantify the risk of developing new chronic conditions in ICU patients compared with the control group. DESIGN: We conducted a retrospective cohort study, combining a national health insurance claims database and a national quality registry for ICUs. Claims data in the timeframe 2012-2014 were combined with clinical data of patients who had been admitted to an ICU during 2013. To assess the differences in risk of developing new chronic conditions, ICU patients were compared with a population-based control group using logistic regression modeling. SETTING: Eighty-one Dutch ICUs. PATIENTS: All patients admitted to an ICU during 2013. A population-based control group was created, and weighted on the age, gender, and socio-economic status of the ICU population. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: ICU patients (n = 56,760) have more chronic conditions compared with the control group (n = 75,232) during the year before ICU admission (p < 0.0001). After case-mix adjustment ICU patients had a higher risk of developing chronic conditions, with odds ratios ranging from 1.67 (CI, 1.29-2.17) for asthma to 24.35 (CI, 14.00-42.34) for epilepsy, compared with the control group. CONCLUSIONS: Due to the high prevalence of chronic conditions and the increased risk of developing new chronic conditions, ICU follow-up care is advised and may focus on the identification and treatment of the new developed chronic conditions.


Subject(s)
Chronic Disease/epidemiology , Intensive Care Units/statistics & numerical data , Survivors/statistics & numerical data , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Odds Ratio , Prevalence , Retrospective Studies , Risk Factors , Socioeconomic Factors
20.
Crit Care Med ; 47(11): 1564-1571, 2019 11.
Article in English | MEDLINE | ID: mdl-31393321

ABSTRACT

OBJECTIVES: Prolonged emergency department to ICU waiting time may delay intensive care treatment, which could negatively affect patient outcomes. The aim of this study was to investigate whether emergency department to ICU time is associated with hospital mortality. DESIGN, SETTING, AND PATIENTS: We conducted a retrospective observational cohort study using data from the Dutch quality registry National Intensive Care Evaluation. Adult patients admitted to the ICU directly from the emergency department in six university hospitals, between 2009 and 2016, were included. Using a logistic regression model, we investigated the crude and adjusted (for disease severity; Acute Physiology and Chronic Health Evaluation IV probability) odds ratios of emergency department to ICU time on mortality. In addition, we assessed whether the Acute Physiology and Chronic Health Evaluation IV probability modified the effect of emergency department to ICU time on mortality. Secondary outcomes were ICU, 30-day, and 90-day mortality. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 14,788 patients were included. The median emergency department to ICU time was 2.0 hours (interquartile range, 1.3-3.3 hr). Emergency department to ICU time was correlated to adjusted hospital mortality (p < 0.002), in particular in patients with the highest Acute Physiology and Chronic Health Evaluation IV probability and long emergency department to ICU time quintiles: odds ratio, 1.29; 95% CI, 1.02-1.64 (2.4-3.7 hr) and odds ratio, 1.54; 95% CI, 1.11-2.14 (> 3.7 hr), both compared with the reference category (< 1.2 hr). For 30-day and 90-day mortality, we found similar results. However, emergency department to ICU time was not correlated to adjusted ICU mortality (p = 0.20). CONCLUSIONS: Prolonged emergency department to ICU time (> 2.4 hr) is associated with increased hospital mortality after ICU admission, mainly driven by patients who had a higher Acute Physiology and Chronic Health Evaluation IV probability. We hereby provide evidence that rapid admission of the most critically ill patients to the ICU might reduce hospital mortality.


Subject(s)
Emergency Service, Hospital , Hospital Mortality , Intensive Care Units , Patient Admission , APACHE , Adult , Aged , Cohort Studies , Female , Heart Arrest/mortality , Hematoma, Subdural/mortality , Hospitals, University , Humans , Intracranial Hemorrhages/mortality , Male , Middle Aged , Netherlands/epidemiology , Registries , Respiratory Insufficiency/mortality , Retrospective Studies , Time Factors , Wounds and Injuries/mortality
SELECTION OF CITATIONS
SEARCH DETAIL