Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33587028

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 has rapidly turned into a pandemic, infecting millions and causing 1 157 509 (as of 27 October 2020) deaths across the globe. In addition to studying the mode of transmission and evasion of host immune system, analysing the viral mutational landscape constitutes an area under active research. The latter is expected to impart knowledge on the emergence of different clades, subclades, viral protein functions and protein-protein and protein-RNA interactions during replication/transcription cycle of virus and response to host immune checkpoints. In this study, we have attempted to bring forth the viral genomic variants defining the major clade(s) as identified from samples collected from the state of Telangana, India. We further report a comprehensive draft of all genomic variations (including unique mutations) present in SARS-CoV-2 strain in the state of Telangana. Our results reveal the presence of two mutually exclusive subgroups defined by specific variants within the dominant clade present in the population. This work attempts to bridge the critical gap regarding the genomic landscape and associate mutations in SARS-CoV-2 from a highly infected southern region of India, which was lacking to date.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , Humans , India/epidemiology , Mutation , Phylogeny , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics
2.
Am J Physiol Cell Physiol ; 315(2): C164-C185, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29561660

ABSTRACT

Parkinson's disease is a neurodegenerative disease characterized by tremors, muscle stiffness, and muscle weakness. Molecular genetic analysis has confirmed that mutations in PARKIN and PINK1 genes, which play major roles in mitochondrial quality control and mitophagy, are frequently associated with Parkinson's disease. PARKIN is an E3 ubiquitin ligase that translocates to mitochondria during loss of mitochondrial membrane potential to increase mitophagy. Although muscle dysfunction is noted in Parkinson's disease, little is known about the involvement of PARKIN in the muscle phenotype of Parkinson's disease. In this study, we report that the mitochondrial uncoupler CCCP promotes PINK1/PARKIN-mediated mitophagy in myogenic C2C12 cells. As a result of this excess mitophagy, we show that CCCP treatment of myotubes leads to the development of myotube atrophy in vitro. Surprisingly, we also found that siRNA-mediated knockdown of Parkin results in impaired mitochondrial turnover. In addition, knockdown of Parkin led to myotubular atrophy in vitro. Consistent with these in vitro results, Parkin knockout muscles showed impaired mitochondrial function and smaller myofiber area, suggesting that Parkin function is required for post-natal skeletal muscle growth and development.


Subject(s)
Mitochondria/metabolism , Muscular Atrophy/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cells, Cultured , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mitophagy/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL