Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 18(2): e1010040, 2022 02.
Article in English | MEDLINE | ID: mdl-35130272

ABSTRACT

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Subject(s)
Chromosome Pairing/physiology , Sex Chromosomes/physiology , Telomere/physiology , Animals , Macropodidae/genetics , Marsupialia/genetics , Meiosis/genetics , Meiosis/physiology , Meiotic Prophase I/physiology , Opossums/genetics , Sex Chromosomes/genetics , Telomere/genetics , X Chromosome/genetics , Y Chromosome/genetics
2.
Emerg Infect Dis ; 28(6): 1250-1253, 2022 06.
Article in English | MEDLINE | ID: mdl-35608824

ABSTRACT

We assessed 4 lizard species in Chile for Trypanosoma cruzi, the causative agent of Chagas disease, and 1 species for its ability to transmit the protozoan to uninfected kissing bugs. All lizard species were infected, and the tested species was capable of transmitting the protozoan, highlighting their role as T. cruzi reservoirs.


Subject(s)
Chagas Disease , Lizards , Triatoma , Trypanosoma cruzi , Animals , Chagas Disease/veterinary , Insect Vectors
3.
J Anim Ecol ; 91(6): 1148-1162, 2022 06.
Article in English | MEDLINE | ID: mdl-34048024

ABSTRACT

Integration of multiple approaches is key to understand the evolutionary processes of local adaptation and speciation. Reptiles have successfully colonized desert environments, that is, extreme and arid conditions that constitute a strong selective pressure on organisms. Here, we studied genomic, physiological and morphological variations of the lizard Liolaemus fuscus to detect adaptations to the Atacama Desert. By comparing populations of L. fuscus inhabiting the Atacama Desert with populations from the Mediterranean forests from central Chile, we aimed at characterizing features related to desert adaptation. We combined ddRAD sequencing with physiological (evaporative water loss, metabolic rate and selected temperature) and morphological (linear and geometric morphometrics) measurements. We integrated the genomic and phenotypic data using redundancy analyses. Results showed strong genetic divergence, along with a high number of fixed loci between desert and forest populations. Analyses detected 110 fixed and 30 outlier loci located within genes, from which 43 were in coding regions, and 12 presented non-synonymous mutations. The candidate genes were associated with cellular membrane and development. Desert lizards presented lower evaporative water loss than those from the forest. Morphological data showed that desert lizards had smaller body size, different allometry, larger eyeballs and more dorsoventrally compressed heads. Our results suggest incipient speciation between desert and forest populations. The adaptive signal must be cautiously interpreted since genetic drift could also contribute to the divergence pattern. Nonetheless, we propose water and resource availability, and changes in habitat structure, as the most relevant challenges for desert reptiles. This study provides insights of the mechanisms that allow speciation as well as desert adaptation in reptiles at multiple levels, and highlights the benefit of integrating independent evidence.


Subject(s)
Lizards , Adaptation, Physiological/genetics , Animals , Desert Climate , Ecosystem , Lizards/genetics , Water
4.
Proc Biol Sci ; 288(1954): 20210754, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34229490

ABSTRACT

Marine species may exhibit genetic structure accompanied by phenotypic differentiation related to adaptation despite their high mobility. Two shape-based morphotypes have been identified for the green turtle (Chelonia mydas) in the Pacific Ocean: the south-central/western or yellow turtle and north-central/eastern or black turtle. The genetic differentiation between these morphotypes and the adaptation of the black turtle to environmentally contrasting conditions of the eastern Pacific region has remained a mystery for decades. Here we addressed both questions using a reduced-representation genome approach (Dartseq; 9473 neutral SNPs) and identifying candidate outlier loci (67 outlier SNPs) of biological relevance between shape-based morphotypes from eight Pacific foraging grounds (n = 158). Our results support genetic divergence between morphotypes, probably arising from strong natal homing behaviour. Genes and enriched biological functions linked to thermoregulation, hypoxia, melanism, morphogenesis, osmoregulation, diet and reproduction were found to be outliers for differentiation, providing evidence for adaptation of C. mydas to the eastern Pacific region and suggesting independent evolutionary trajectories of the shape-based morphotypes. Our findings support the evolutionary distinctness of the enigmatic black turtle and contribute to the adaptive research and conservation genomics of a long-lived and highly mobile vertebrate.


Subject(s)
Turtles , Adaptation, Physiological/genetics , Animals , Genetic Drift , Pacific Ocean , Turtles/genetics
5.
Mol Ecol ; 30(19): 4660-4672, 2021 10.
Article in English | MEDLINE | ID: mdl-34309098

ABSTRACT

The centre-periphery hypothesis (CPH) postulates that populations close to the centre of a species distribution will exhibit higher genetic diversity and lower genetic differentiation than populations located at the edge of the distribution. The centre of a species' distribution might represent an optimum for the environmental factors influencing the species absolute fitness and, therefore, genetic diversity. In species with wide distribution, the geographical variation of biotic and abiotic variables is crucial to understand the underlying mechanisms of the CPH. We evaluated the CPH and specifically tested which environmental variables better explained the patterns of genetic diversity in the kissing bug Mepraia spinolai, one of the main wild vectors of Chagas disease in southern South America, distributed across three Mediterranean climatic ecoregions in Chile. We analysed 2380 neutral single nucleotide polymorphisms to estimate genetic diversity. Mean winter temperature, mean summer temperature, vegetation cover, population abundance, proportion of winged individuals and female abdomen area were measured for each kissing bug population to construct a model. Lower genetic diversity was detected in populations at the edge of the distribution compared to those in the centre. However, genetic differentiation was not higher in the periphery. Genetic diversity was related to climatic and biological variables; there was a positive relationship with mean winter temperature and a negative association with mean summer temperature and body size. These results partially support the CPH and identify biotic (abdomen area) and abiotic (winter/summer temperatures) factors that would affect genetic diversity in this restricted-dispersal species of epidemiological relevance.


Subject(s)
Chagas Disease , Triatominae , Animals , Chile , Female , Genetic Variation , Geography , Humans
6.
Chromosoma ; 128(2): 149-163, 2019 06.
Article in English | MEDLINE | ID: mdl-30826871

ABSTRACT

Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.


Subject(s)
Chromosome Pairing , Meiosis , Mice/genetics , Translocation, Genetic , Animals , Female , Heterozygote , Karyotype , Male , Meiotic Prophase I , Spermatocytes/cytology
7.
Mol Plant Microbe Interact ; 30(7): 557-565, 2017 07.
Article in English | MEDLINE | ID: mdl-28548604

ABSTRACT

Quorum-sensing systems play important roles in host colonization and host establishment of Burkholderiales species. Beneficial Paraburkholderia species share a conserved quorum-sensing (QS) system, designated BraI/R, that controls different phenotypes. In this context, the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN possesses two different homoserine lactone QS systems BpI.1/R.1 and BpI.2/R.2 (BraI/R-like QS system). The BpI.1/R.1 QS system was previously reported to be important to colonize and produce beneficial effects in Arabidopsis thaliana plants. Here, we analyzed the temporal variations of the QS gene transcript levels in the wild-type strain colonizing plant roots. The gene expression patterns showed relevant differences in both QS systems compared with the wild-type strain in the unplanted control treatment. The gene expression data were used to reconstruct a regulatory network model of QS systems in P. phytofirmans PsJN, using a Boolean network model. Also, we examined the phenotypic traits and transcript levels of genes involved in QS systems, using P. phytofirmans mutants in homoserine lactone synthases genes. We observed that the BpI.1/R.1 QS system regulates biofilm formation production in strain PsJN and this phenotype was associated with the lower expression of a specific extracytoplasmic function sigma factor ecf26.1 gene (implicated in biofilm formation) in the bpI.1 mutant strain.


Subject(s)
Arabidopsis/growth & development , Biofilms , Burkholderia/genetics , Plant Roots/growth & development , Quorum Sensing/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Arabidopsis/microbiology , Burkholderia/metabolism , Burkholderia/physiology , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Host-Pathogen Interactions , Models, Genetic , Mutation , Plant Roots/microbiology
8.
Mol Plant Microbe Interact ; 30(3): 215-230, 2017 03.
Article in English | MEDLINE | ID: mdl-28118091

ABSTRACT

Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv. tomato DC3000, in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared with noninoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared with noninoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants suggested that resistance to infection by DC3000 in plants treated with strain PsJN involves salicylic acid-, jasmonate-, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being a necessary metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium.


Subject(s)
Arabidopsis/microbiology , Burkholderia/physiology , Disease Resistance , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Arabidopsis/genetics , Arabidopsis/immunology , Biofilms , Cyclopentanes/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Host-Pathogen Interactions , Mutation/genetics , Oxylipins/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Signal Transduction , Transcription, Genetic , Virulence/genetics
9.
Appl Environ Microbiol ; 83(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27795307

ABSTRACT

Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE: This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.


Subject(s)
Bacterial Proteins/genetics , Burkholderiaceae/genetics , Burkholderiaceae/metabolism , Gene Expression Regulation, Bacterial , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Bacterial Proteins/metabolism , Burkholderiaceae/physiology , Genes, Bacterial , Plant Development , Plant Growth Regulators/chemistry , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Stress, Physiological/genetics
10.
Biol Res ; 50(1): 38, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29169375

ABSTRACT

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains and consequently is prone to modification by chromosomal rearrangements. We have shown that nuclear architecture is modified in spermatocytes of Robertsonian (Rb) homozygotes of Mus domesticus. In this study we analyse the synaptic configuration of the quadrivalents formed in the meiotic prophase of spermatocytes of mice double heterozygotes for the dependent Rb chromosomes: Rbs 11.16 and 16.17. RESULTS: Electron microscope spreads of 60 pachytene spermatocytes from four animals of Mus domesticus 2n = 38 were studied and their respective quadrivalents analysed in detail. Normal synaptonemal complex was found between arms 16 of the Rb metacentric chromosomes, telocentrics 11 and 17 and homologous arms of the Rb metacentric chromosomes. About 43% of the quadrivalents formed a synaptonemal complex between the heterologous short arms of chromosomes 11 and 17. This synaptonemal complex is bound to the nuclear envelope through a fourth synapsed telomere, thus dragging the entire quadrivalent to the nuclear envelope. About 57% of quadrivalents showed unsynapsed single axes in the short arms of the telocentric chromosomes. About 90% of these unsynapsed quadrivalents also showed a telomere-to-telomere association between one of the single axes of the telocentric chromosome 11 or 17 and the X chromosome single axis, which was otherwise normally paired with the Y chromosome. Nucleolar material was associated with two bivalents and with the quadrivalent. CONCLUSIONS: The spermatocytes of heterozygotes for dependent Rb chromosomes formed a quadrivalent where four chromosomes are synapsed together and bound to the nuclear envelope through four telomeres. The nuclear configuration is determined by the fourth shortest telomere, which drags the centromere regions and heterochromatin of all the chromosomes towards the nuclear envelope, favouring the reiterated encounter and eventual rearrangement between the heterologous chromosomes. The unsynapsed regions of quadrivalents are frequently bound to the single axis of the X chromosome, possibly perturbing chromatin condensation and gene expression.


Subject(s)
Cell Nucleolus/physiology , Spermatocytes/physiology , Spermatocytes/ultrastructure , Synaptonemal Complex/physiology , X Chromosome/physiology , Y Chromosome/physiology , Animals , Cell Nucleolus/genetics , Heterochromatin/genetics , Heterochromatin/physiology , Heterozygote , Male , Meiotic Prophase I/genetics , Meiotic Prophase I/physiology , Mice , Synaptonemal Complex/genetics , Telomere/genetics , Telomere/physiology , Translocation, Genetic , X Chromosome/genetics , Y Chromosome/genetics
11.
Chromosoma ; 123(6): 529-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25053180

ABSTRACT

Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.


Subject(s)
Centromere/chemistry , Genetic Speciation , Meiosis/genetics , Mice/genetics , Translocation, Genetic , Animals , Centromere/ultrastructure , Chromosome Aberrations , Chromosome Segregation , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/ultrastructure , Female , Fertility/genetics , History, 20th Century , Karyotype , Male , Molecular Biology/history
12.
Appl Environ Microbiol ; 81(12): 3914-24, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25795675

ABSTRACT

Cupriavidus pinatubonensis JMP134, like many other environmental bacteria, uses a range of aromatic compounds as carbon sources. Previous reports have shown a preference for benzoate when this bacterium grows on binary mixtures composed of this aromatic compound and 4-hydroxybenzoate or phenol. However, this observation has not been extended to other aromatic mixtures resembling a more archetypal context. We carried out a systematic study on the substrate preference of C. pinatubonensis JMP134 growing on representative aromatic compounds channeled through different catabolic pathways described in aerobic bacteria. Growth tests of nearly the entire set of binary combinations and in mixtures composed of 5 or 6 aromatic components showed that benzoate and phenol were always the preferred and deferred growth substrates, respectively. This pattern was supported by kinetic analyses that showed shorter times to initiate consumption of benzoate in aromatic compound mixtures. Gene expression analysis by real-time reverse transcription-PCR (RT-PCR) showed that, in all mixtures, the repression by benzoate over other catabolic pathways was exerted mainly at the transcriptional level. Additionally, inhibition of benzoate catabolism suggests that its multiple repressive actions are not mediated by a sole mechanism, as suggested by dissimilar requirements of benzoate degradation for effective repression in different aromatic compound mixtures. The hegemonic preference for benzoate over multiple aromatic carbon sources is not explained on the basis of growth rate and/or biomass yield on each single substrate or by obvious chemical or metabolic properties of these aromatic compounds.


Subject(s)
Benzoates/metabolism , Carbon/metabolism , Cupriavidus/growth & development , Cupriavidus/metabolism , Hydrocarbons, Aromatic/metabolism , Soil Microbiology , Bacterial Proteins/genetics , Biodegradation, Environmental , Culture Media/chemistry , Cupriavidus/genetics , Gene Expression Regulation, Bacterial , Mutation , Parabens/metabolism , Phenol/metabolism , Real-Time Polymerase Chain Reaction , Transcription, Genetic
13.
Chromosome Res ; 22(4): 545-57, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25385393

ABSTRACT

Rb translocations are chromosomal rearrangements frequently found in natural populations of the house mouse Mus musculus domesticus. The standard diploid karyotype of the house mouse consisting of 40 telocentric chromosomes may be reduced by the emergence of metacentric Rb chromosomes. Multiple simple Rb heterozygotes form trivalents exhibiting higher anaphase nondisjunction frequency and consequently higher number of unbalanced gametes than in normal males. This work will attempt to establish whether frequencies of aneuploidy observed in heterozygote spermatids of the house mouse M. musculus domesticus show differences in chromosomes derived from different trivalents. Towards this goal, the number and distribution frequency of aneuploidy was assessed via FISH staining of specific chromosomes of spermatids derived from 2n = 32 individuals. Our results showed that for a given set of target chromosomes, 90% of the gametes were balanced, resulting from alternate segregation, and that there were no differences (approx. 10%) in aneuploidy frequencies in chromosomes derived from different trivalents. These observations suggest that segregation effectiveness does not depend on the type of chromosomes involved in trivalents. As a consequence of the trivalent's configuration, joint segregation of the telocentric chromosomes occurs thus favoring their appearance together in early spermatids. Our data suggest that Rb chromosomes and their telocentric homologs are subject to architectural constraints placing them close to each other. This proximity may ultimately facilitate fusion between them, hence contributing to a prevalence of Rb metacentric chromosomes.


Subject(s)
Aneuploidy , Chromosomes/genetics , Meiosis/genetics , Translocation, Genetic/genetics , Animals , Heterozygote , Karyotyping , Male , Mice , Nondisjunction, Genetic , Spermatids/pathology
14.
Bull Math Biol ; 76(8): 1941-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25033783

ABSTRACT

The establishment of associations between bivalents from Mus domesticus 2n = 40 spermatocytes is a common phenomenon that shows up during the first prophase of meiotic nuclei. In each nucleus, a seemingly random display of variable size clusters of bivalents in association is observed. These associations originate a particular nuclear architecture and determine the probability of encounters between chromosome domains. Hence, the type of randomness in associations between bivalents has nontrivial consequences. We explore different models for randomness and the associated bivalent probability distributions and find that a simple model based on randomly coloring a subset of vertices of a 6-regular graph provides best agreement with microspreads observations. The notion of randomness is thereby explained in conjunction with the underlying local geometry of the nuclear envelope.


Subject(s)
Chromosomes/physiology , Models, Biological , Prophase/physiology , Spermatocytes/cytology , Algorithms , Animals , Computer Simulation , Male , Mice , Mice, Inbred C3H , Stochastic Processes
15.
Biol Res ; 47: 16, 2014 May 14.
Article in English | MEDLINE | ID: mdl-25027603

ABSTRACT

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. RESULTS: In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. CONCLUSIONS: The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.


Subject(s)
Cell Nucleus/genetics , Chromosomes, Mammalian/ultrastructure , Meiotic Prophase I , Spermatocytes/ultrastructure , Animals , Cell Nucleus/diagnostic imaging , Heterochromatin , Heterozygote , Homozygote , In Situ Hybridization, Fluorescence , Male , Mice , Molecular Probes , Pachytene Stage , Subcellular Fractions , Ultrasonography
16.
Mol Plant Microbe Interact ; 26(5): 546-53, 2013 May.
Article in English | MEDLINE | ID: mdl-23301615

ABSTRACT

Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Burkholderia/physiology , Indoleacetic Acids/metabolism , Quorum Sensing , Arabidopsis/growth & development , Signal Transduction
17.
Chromosoma ; 121(3): 307-26, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22366883

ABSTRACT

During the first meiotic prophase in male mammals, sex chromosomes undergo a program of transcriptional silencing called meiotic sex chromosome inactivation (MSCI). MSCI is triggered by accumulation of proteins like BRCA1, ATR, and γH2AX on unsynapsed chromosomes, followed by local changes on the sex chromatin, including histone modifications, incorporation of specific histone variants, non-histone proteins, and RNAs. It is generally thought that MSCI represents the transition of unsynapsed chromatin from a transcriptionally active state to a repressed state. However, transcription is generally low in the whole nucleus during the early stages of the first meiotic prophase, when markers of MSCI first appear, and is then reactivated globally during pachytene. Thus, an alternative possibility is that MSCI represents the targeted maintenance and/or reinforcement of a prior repressed state, i.e., a failure to reactivate. Here, we present an analysis of the temporal and spatial appearance of transcriptional and MSCI markers, as well as chromatin modifications related to transcriptional regulation. We show that levels of RNA pol II and histone H3 acetylated at lysine 9 (H3K9ac) are low during leptotene, zygotene, and early pachytene, but increase strongly in mid-pachytene, indicating that reactivation occurs with some delay after synapsis. However, while transcription markers appear abundantly on the autosomes at mid-pachytene, they are not directed to the sex chromosomes. Interestingly, we found that chromatin modifications related to transcriptional silencing and/or MSCI, namely, histone H3 trimethylated at lysine 9 (H3K9me3), histone H3 monomethylated at lysine 4 (H3K4me1), γH2AX, SUMO1, and XMR, appear on the sex chromosomes before autosomes become reactivated. These results suggest that the onset of MSCI during late zygotene and early pachytene may prevent sex chromosome reactivation during mid-pachytene instead of promoting inactivation de novo. Additionally, we found temporal differences between the X and Y chromosomes in the recruitment of DNA repair and MSCI markers, indicating a differential regulation of these processes. We propose that many of the meiotic defects attributed to failure to silence sex chromosomes could be interpreted as a more general process of transcriptional misregulation that occurs under certain pathological circumstances in zygotene and early pachytene.


Subject(s)
Gene Silencing , Meiotic Prophase I/genetics , X Chromosome/metabolism , Y Chromosome/metabolism , Animals , Carrier Proteins , Cell Cycle Proteins , Chromatin/metabolism , Chromosome Pairing/physiology , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins , Histones/metabolism , Male , Mice , Nuclear Proteins/metabolism , Pachytene Stage/physiology , RNA Polymerase II/metabolism , RNA-Binding Proteins , SUMO-1 Protein/metabolism , Transcription, Genetic
18.
Chromosome Res ; 20(2): 269-78, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22231503

ABSTRACT

The house mouse is characterised by highly variable chromosome number due to the presence of Robertsonian (Rb) chromosomes. During meiosis in Rb heterozygotes, intricated chromosomal figures are produced, and many unsynapsed regions are present during the first prophase, triggering a meiotic silencing of unsynapsed chromatin (MSUC) in a similar mode to the sex chromosome inactivation. The presence of unsynapsed chromosome regions is associated with impaired spermatogenesis. Interestingly, in male mice carrying multiple Rb trivalents, the frequency of germ cell death, defective tubules, and altered sperm morphology decreases during aging. Here, we studied whether synapsis of trivalent chromosomes and MSUC are involved in this improvement. By immunocytochemistry, we analysed the frequency of unsynapsed chromosomes and of those positive to γH2AX (a marker of MSUC) labelling in spermatocytes of 3-, 5- and 7-month-old Rb heterozygotes. With aging, we observed a decrease of the frequency of unsynapsed chromosomes, of spermatocytes bearing them and of trivalents carrying γH2AX-negative unsynapsed regions. Our quantitative results show that both synapsis and MSUC processes are better accomplished during male aging, partially accounting for the improvement of spermatogenesis.


Subject(s)
Aging/genetics , Chromosome Pairing , Heterozygote , Translocation, Genetic , Animals , Male , Mice , Sex Chromosomes , Spermatocytes/metabolism
19.
Front Microbiol ; 14: 1159176, 2023.
Article in English | MEDLINE | ID: mdl-37275147

ABSTRACT

Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.

20.
Acta Trop ; 248: 107039, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839667

ABSTRACT

The proximity between infectious disease vector populations and human settlements, and the infection prevalence of vector populations can determine the rate of encounters between vectors and humans and hence infection risk. The diet of sylvatic triatomine vectors (kissing bugs) provides evidence about the host species involved in the maintenance of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. Here, we characterized the diet of the Chilean endemic triatomine Mepraia spinolai using Next Generation Sequencing (NGS), and evaluated the relation between T. cruzi infection status and proximity to human settlements, with the proportion of human and human-associated (domestic and synanthropic) vertebrates in the diet. We sampled 28 M. spinolai populations, covering a latitudinal range of ∼800 km in Chile. For each population, genomic DNA was obtained from M. spinolai intestinal content. We assessed T. cruzi infection individually, and sequenced vertebrate cytochrome b to characterize the diet from infected and uninfected pooled samples. Human and human-associated animals were present in the diet of both T. cruzi-infected (13.50 %) and uninfected (10.43 %) kissing bugs. The proportion of human and human-associated vertebrates in the diet of infected M. spinolai was negatively associated with the distance from surrounding human settlements, but no relationship was detected for uninfected kissing bugs. This pattern could be related to alterations of kissing bug feeding behavior when infected by the protozoan. Our results highlight the relevance of developing a deeper knowledge of the wild transmission cycle of T. cruzi, thus advancing in the surveillance of vectors present in the natural environment near human settlements.


Subject(s)
Chagas Disease , Triatoma , Triatominae , Trypanosoma cruzi , Animals , Humans , Chagas Disease/epidemiology , Trypanosoma cruzi/genetics , Diet
SELECTION OF CITATIONS
SEARCH DETAIL