Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Publication year range
1.
Cell ; 184(9): 2316-2331.e15, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33773105

ABSTRACT

Most human monoclonal antibodies (mAbs) neutralizing SARS-CoV-2 recognize the spike (S) protein receptor-binding domain and block virus interactions with the cellular receptor angiotensin-converting enzyme 2. We describe a panel of human mAbs binding to diverse epitopes on the N-terminal domain (NTD) of S protein from SARS-CoV-2 convalescent donors and found a minority of these possessed neutralizing activity. Two mAbs (COV2-2676 and COV2-2489) inhibited infection of authentic SARS-CoV-2 and recombinant VSV/SARS-CoV-2 viruses. We mapped their binding epitopes by alanine-scanning mutagenesis and selection of functional SARS-CoV-2 S neutralization escape variants. Mechanistic studies showed that these antibodies neutralize in part by inhibiting a post-attachment step in the infection cycle. COV2-2676 and COV2-2489 offered protection either as prophylaxis or therapy, and Fc effector functions were required for optimal protection. Thus, natural infection induces a subset of potent NTD-specific mAbs that leverage neutralizing and Fc-mediated activities to protect against SARS-CoV-2 infection using multiple functional attributes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Protective Agents/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Binding, Competitive , COVID-19/immunology , COVID-19/virology , Chemokines/metabolism , Chlorocebus aethiops , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/metabolism , Lung/metabolism , Mice, Inbred C57BL , Models, Molecular , Mutagenesis/genetics , Neutralization Tests , Protein Domains , Vero Cells
2.
Cell ; 184(17): 4414-4429.e19, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34416146

ABSTRACT

Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.


Subject(s)
Alphavirus/immunology , Antibodies, Viral/immunology , Conserved Sequence/immunology , Epitopes/immunology , Viral Proteins/immunology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chlorocebus aethiops , Epitope Mapping , Epitopes/chemistry , Humans , Male , Mice, Inbred C57BL , Models, Biological , Monocytes/metabolism , Vero Cells , Viral Proteins/chemistry , Virus Release
3.
Cell ; 184(17): 4430-4446.e22, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34416147

ABSTRACT

Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.


Subject(s)
Alphavirus/immunology , Antibodies, Viral/immunology , Cross Reactions/immunology , Viral Proteins/immunology , Virus Release/physiology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Cell Line , Chikungunya virus/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/virology , Epitope Mapping , Female , Horses , Humans , Hydrogen-Ion Concentration , Joints/pathology , Male , Mice, Inbred C57BL , Models, Biological , Protein Binding , RNA, Viral/metabolism , Receptors, Fc/metabolism , Temperature , Virion/metabolism , Virus Internalization
4.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Article in English | MEDLINE | ID: mdl-34716452

ABSTRACT

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/genetics , COVID-19/metabolism , COVID-19/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
5.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38823390

ABSTRACT

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Influenza B virus , Influenza, Human , Neuraminidase , Neuraminidase/immunology , Humans , Influenza B virus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza Vaccines/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Viral Proteins/immunology , Virus Replication/drug effects
6.
Cell ; 174(4): 938-952.e13, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30096313

ABSTRACT

Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Ebolavirus/immunology , Epitopes/immunology , Hemorrhagic Fever, Ebola/prevention & control , Membrane Glycoproteins/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Immunization , Mice , Mice, Inbred BALB C , Treatment Outcome
7.
Cell ; 169(5): 891-904.e15, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28525756

ABSTRACT

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Ebola Vaccines/immunology , Hemorrhagic Fever, Ebola/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Complementarity Determining Regions , Cross Reactions , Ebolavirus/immunology , Epitope Mapping , Epitopes, B-Lymphocyte/immunology , Female , Ferrets , Guinea Pigs , Immunoglobulin Fab Fragments/ultrastructure , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Models, Molecular
8.
Cell ; 164(3): 392-405, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26806128

ABSTRACT

Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Survivors , Animals , Cross Reactions , Disease Models, Animal , Epitope Mapping , Guinea Pigs , Humans , Mice , Mice, Inbred BALB C , Microscopy, Electron , Models, Molecular , Mutagenesis , Uganda
9.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33675683

ABSTRACT

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Subject(s)
Antibodies, Neutralizing/immunology , Germ Cells/immunology , Glycoproteins/immunology , Hepacivirus/immunology , Hepatitis C/immunology , Macaca mulatta/immunology , Viral Envelope Proteins/immunology , Animals , B-Lymphocytes/immunology , CHO Cells , Cell Line , Cricetulus , Epitopes/immunology , HEK293 Cells , Hepatitis C/virology , Humans , Longitudinal Studies , Macaca mulatta/virology , Receptors, Antigen, B-Cell/immunology , Vaccination/methods
10.
Cell ; 163(5): 1095-1107, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26553503

ABSTRACT

We screened a panel of mouse and human monoclonal antibodies (MAbs) against chikungunya virus and identified several with inhibitory activity against multiple alphaviruses. Passive transfer of broadly neutralizing MAbs protected mice against infection by chikungunya, Mayaro, and O'nyong'nyong alphaviruses. Using alanine-scanning mutagenesis, loss-of-function recombinant proteins and viruses, and multiple functional assays, we determined that broadly neutralizing MAbs block multiple steps in the viral lifecycle, including entry and egress, and bind to a conserved epitope on the B domain of the E2 glycoprotein. A 16 Å resolution cryo-electron microscopy structure of a Fab fragment bound to CHIKV E2 B domain provided an explanation for its neutralizing activity. Binding to the B domain was associated with repositioning of the A domain of E2 that enabled cross-linking of neighboring spikes. Our results suggest that B domain antigenic determinants could be targeted for vaccine or antibody therapeutic development against multiple alphaviruses of global concern.


Subject(s)
Alphavirus Infections/immunology , Alphavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes , Viral Envelope Proteins/immunology , Alphavirus/classification , Alphavirus/metabolism , Alphavirus Infections/prevention & control , Alphavirus Infections/therapy , Amino Acid Sequence , Animals , Chikungunya virus/chemistry , Chikungunya virus/immunology , Cryoelectron Microscopy , Glycoproteins/chemistry , Glycoproteins/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Viral Envelope Proteins/chemistry , Viral Vaccines/immunology , Virus Internalization
11.
Immunity ; 52(2): 388-403.e12, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32023489

ABSTRACT

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Ebolavirus/immunology , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Cell Line , Disease Models, Animal , Drug Therapy, Combination , Epitopes , Female , Glycoproteins/chemistry , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immunoglobulin Fab Fragments/immunology , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Molecular Mimicry , Protein Conformation
12.
Immunity ; 49(2): 363-374.e10, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30029854

ABSTRACT

Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , Ebolavirus/immunology , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/immunology , 3T3 Cells , Adult , Animals , CHO Cells , Cell Line , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Drosophila , Female , Ferrets , Guinea Pigs , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/immunology , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , THP-1 Cells , Vero Cells
13.
PLoS Pathog ; 19(10): e1011722, 2023 10.
Article in English | MEDLINE | ID: mdl-37812640

ABSTRACT

Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Broadly Neutralizing Antibodies , Transcriptome , Antibodies, Neutralizing , Immunoglobulin G , Immunoglobulin A , Antibodies, Viral
14.
J Virol ; 97(7): e0159622, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37395646

ABSTRACT

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Subject(s)
Antibodies, Viral , COVID-19 , Epitopes , Severe acute respiratory syndrome-related coronavirus , Humans , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Epitopes/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Protein Domains , Crystallography, X-Ray , Protein Structure, Quaternary , Models, Molecular , Cell Line
15.
Nature ; 557(7706): 570-574, 2018 05.
Article in English | MEDLINE | ID: mdl-29769725

ABSTRACT

Arthritogenic alphaviruses comprise a group of enveloped RNA viruses that are transmitted to humans by mosquitoes and cause debilitating acute and chronic musculoskeletal disease 1 . The host factors required for alphavirus entry remain poorly characterized 2 . Here we use a genome-wide CRISPR-Cas9-based screen to identify the cell adhesion molecule Mxra8 as an entry mediator for multiple emerging arthritogenic alphaviruses, including chikungunya, Ross River, Mayaro and O'nyong nyong viruses. Gene editing of mouse Mxra8 or human MXRA8 resulted in reduced levels of viral infection of cells and, reciprocally, ectopic expression of these genes resulted in increased infection. Mxra8 bound directly to chikungunya virus particles and enhanced virus attachment and internalization into cells. Consistent with these findings, Mxra8-Fc fusion protein or anti-Mxra8 monoclonal antibodies blocked chikungunya virus infection in multiple cell types, including primary human synovial fibroblasts, osteoblasts, chondrocytes and skeletal muscle cells. Mutagenesis experiments suggest that Mxra8 binds to a surface-exposed region across the A and B domains of chikungunya virus E2 protein, which are a speculated site of attachment. Finally, administration of the Mxra8-Fc protein or anti-Mxra8 blocking antibodies to mice reduced chikungunya and O'nyong nyong virus infection as well as associated foot swelling. Pharmacological targeting of Mxra8 could form a strategy for mitigating infection and disease by multiple arthritogenic alphaviruses.


Subject(s)
Chikungunya virus/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism , O'nyong-nyong Virus/metabolism , Receptors, Virus/metabolism , 3T3 Cells , Animals , Antibodies, Blocking/immunology , CRISPR-Cas Systems/genetics , Chikungunya virus/pathogenicity , Chondrocytes/metabolism , Fibroblasts/metabolism , Humans , Immunoglobulins/immunology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , O'nyong-nyong Virus/pathogenicity , Osteoblasts/metabolism , Receptors, Fc/metabolism , Receptors, Virus/deficiency , Receptors, Virus/genetics
16.
J Virol ; 96(11): e0007122, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35575481

ABSTRACT

Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Somatic Hypermutation, Immunoglobulin , Zika Virus , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Complementarity Determining Regions/genetics , Epitopes/genetics , Mutation , Rabbits , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Zika Virus/immunology
17.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33597214

ABSTRACT

Zika virus (ZIKV), a mosquito-transmitted flavivirus, caused a large epidemic in Latin America between 2015 and 2017. Effective ZIKV vaccines and treatments are urgently needed to prevent future epidemics and severe disease sequelae. People infected with ZIKV develop strongly neutralizing antibodies linked to viral clearance and durable protective immunity. To understand the mechanisms of protective immunity and to support the development of ZIKV vaccines, we characterize here a strongly neutralizing antibody, B11F, isolated from a patient who recovered from ZIKV. Our results indicate that B11F targets a complex epitope on the virus that spans domains I and III of the envelope glycoprotein. While previous studies point to quaternary epitopes centered on domain II of the ZIKV E glycoprotein as targets of strongly neutralizing and protective human antibodies, we uncover a new site spanning domains I and III as a target of strongly neutralizing human antibodies.IMPORTANCE People infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope that is targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and to guiding the design and evaluation of candidate vaccines.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Epitopes , Viral Envelope Proteins , Zika Virus Infection , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Chlorocebus aethiops , Epitopes/immunology , Humans , Protein Binding , Protein Domains , Vero Cells , Viral Envelope/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology
18.
Nature ; 540(7633): 443-447, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27819683

ABSTRACT

Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies from subjects that were previously infected with ZIKV. We show that a subset of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African and Asian-American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human antibodies can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.


Subject(s)
Antibodies, Neutralizing/immunology , Fetal Diseases/prevention & control , Infectious Disease Transmission, Vertical/prevention & control , Virus Replication/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/growth & development , Zika Virus/immunology , Africa , Americas , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Antibody Specificity , Asia , B-Lymphocytes/immunology , Disease Models, Animal , Epitope Mapping , Female , Fetal Diseases/immunology , Fetal Diseases/virology , Fetus/immunology , Fetus/virology , Humans , Male , Mice , Models, Molecular , Placenta/immunology , Placenta/virology , Pregnancy , Protein Multimerization , Survival Rate , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Zika Virus Infection/pathology
19.
Proc Natl Acad Sci U S A ; 116(5): 1591-1596, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30642974

ABSTRACT

Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus in the Flaviviridae family. In contrast to most other insect-transmitted flaviviruses, ZIKV also can be transmitted sexually and from mother to fetus in humans. During recent outbreaks, ZIKV infections have been linked to microcephaly, congenital disease, and Guillain-Barré syndrome. Neutralizing antibodies have potential as therapeutic agents. We report here a 4-Å-resolution cryo-electron microscopy structure of the ZIKV virion in complex with Fab fragments of the potently neutralizing human monoclonal antibody ZIKV-195. The footprint of the ZIKV-195 Fab fragment expands across two adjacent envelope (E) protein protomers. ZIKV neutralization by this antibody is presumably accomplished by cross-linking the E proteins, which likely prevents formation of E protein trimers required for fusion of the viral and cellular membranes. A single dose of ZIKV-195 administered 5 days after virus inoculation showed marked protection against lethality in a stringent mouse model of infection.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cryoelectron Microscopy/methods , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Vaccination/methods , Viral Envelope Proteins/immunology
20.
PLoS Pathog ; 15(6): e1007716, 2019 06.
Article in English | MEDLINE | ID: mdl-31170257

ABSTRACT

There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the ß-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Epitopes , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Dengue Vaccines/genetics , Dengue Vaccines/immunology , Dengue Virus/immunology , Epitopes/genetics , Epitopes/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL