Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Wetlands (Wilmington) ; 39(4): 717-727, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31564763

ABSTRACT

Wetland construction can mitigate the biodiversity and water quality losses associated with reduced natural wetland coverage. While beneficial effects of wetland construction for bats have been observed in natural and rural settings, the effects of wetland construction on bats in an urban ecosystem are less understood. We used passive acoustic monitoring to measure bat activity levels and diversity at two constructed wetlands and two control sites on the University of North Carolina Greensboro campus, in Greensboro, North Carolina, USA. We monitored all 4 sites before and after wetland construction. Pre-wetland construction, there were few differences in bat activity and community structure at our sites. After wetland construction, we observed greater activity, attributable to all species we recorded, at wetland sites compared to control sites. Species diversity and species richness were also higher at wetland sites compared to control sites. When comparing the same sites before and after wetland construction, both bat activity and species richness increased after construction, but the effects were seen in Winter and not Spring. Our results demonstrate that bats use constructed wetlands in urban ecosystems similarly to other habitat settings. Increases in bat activity, diversity, and species richness occurred within one year of wetland construction.

2.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343080

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Heart Diseases , Animals , Child , Humans , Mice , Arrhythmias, Cardiac , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Pyrazoles/pharmacology
3.
Front Cardiovasc Med ; 8: 757784, 2021.
Article in English | MEDLINE | ID: mdl-35096991

ABSTRACT

Background: Doxorubicin is a widely used and effective chemotherapy, but the major limiting side effect is cardiomyopathy which in some patients leads to congestive heart failure. Genetic variants in TRPC6 have been associated with the development of doxorubicin-induced cardiotoxicity, suggesting that TRPC6 may be a therapeutic target for cardioprotection in cancer patients. Methods: Assessment of Trpc6 deficiency to prevent doxorubicin-induced cardiac damage and function was conducted in male and female B6.129 and Trpc6 knock-out mice. Mice were treated with doxorubicin intraperitoneally every other day for a total of 6 injections (4 mg/kg/dose, cumulative dose 24 mg/kg). Cardiac damage was measured in heart sections by quantification of vacuolation and fibrosis, and in heart tissue by gene expression of Tnni3 and Myh7. Cardiac function was determined by echocardiography. Results: When treated with doxorubicin, male Trpc6-deficient mice showed improvement in markers of cardiac damage with significantly reduced vacuolation, fibrosis and Myh7 expression and increased Tnni3 expression in the heart compared to wild-type controls. Similarly, male Trpc6-deficient mice treated with doxorubicin had improved LVEF, fractional shortening, cardiac output and stroke volume. Female mice were less susceptible to doxorubicin-induced cardiac damage and functional changes than males, but Trpc6-deficient females had improved vacuolation with doxorubicin treatment. Sex differences were observed in wild-type and Trpc6-deficient mice in body-weight and expression of Trpc1, Trpc3 and Rcan1 in response to doxorubicin. Conclusions: Trpc6 promotes cardiac damage following treatment with doxorubicin resulting in cardiomyopathy in male mice. Female mice are less susceptible to cardiotoxicity with more robust ability to modulate other Trpc channels and Rcan1 expression.

SELECTION OF CITATIONS
SEARCH DETAIL