Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Publication year range
1.
Cell ; 165(5): 1092-1105, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27133165

ABSTRACT

Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here, we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells, resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival, respectively. Thus, our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Drug Resistance, Neoplasm , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Cell Culture Techniques , Cell Line, Tumor , Cisplatin/therapeutic use , Female , Fibroblasts/metabolism , Glutathione/metabolism , Humans , Interferon-gamma/metabolism , Mice , Mice, Inbred NOD , Mice, Nude
2.
Genome Res ; 34(5): 740-756, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38744529

ABSTRACT

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Subject(s)
Adenine , DNA Methylation , Tetrahymena thermophila , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolism , Adenine/metabolism , Adenine/analogs & derivatives , DNA Replication , DNA, Protozoan/genetics , DNA, Protozoan/metabolism
3.
PLoS Genet ; 20(6): e1011314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857306

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) invasion studies have focused on coding genes, while few studies evaluate long non-coding RNAs (lncRNAs), transcripts without protein-coding potential, for role in GBM invasion. We leveraged CRISPR-interference (CRISPRi) to evaluate invasive function of GBM-associated lncRNAs in an unbiased functional screen, characterizing and exploring the mechanism of identified candidates. METHODS: We implemented a CRISPRi lncRNA loss-of-function screen evaluating association of lncRNA knockdown (KD) with invasion capacity in Matrigel. Top screen candidates were validated using CRISPRi and oligonucleotide(ASO)-mediated knockdown in three tumor lines. Clinical relevance of candidates was assessed via The Cancer Genome Atlas(TCGA) and Genotype-Tissue Expression(GTEx) survival analysis. Mediators of lncRNA effect were identified via differential expression analysis following lncRNA KD and assessed for tumor invasion using knockdown and rescue experiments. RESULTS: Forty-eight lncRNAs were significantly associated with 33-83% decrease in invasion (p<0.01) upon knockdown. The top candidate, LINC03045, identified from effect size and p-value, demonstrated 82.7% decrease in tumor cell invasion upon knockdown, while LINC03045 expression was significantly associated with patient survival and tumor grade(p<0.0001). RNAseq analysis of LINC03045 knockdown revealed that WASF3, previously implicated in tumor invasion studies, was highly correlated with lncRNA expression, while WASF3 KD was associated with significant decrease in invasion. Finally, WASF3 overexpression demonstrated rescue of invasive function lost with LINC03045 KD. CONCLUSION: CRISPRi screening identified LINC03045, a previously unannotated lncRNA, as critical to GBM invasion. Gene expression is significantly associated with tumor grade and survival. RNA-seq and mechanistic studies suggest that this novel lncRNA may regulate invasion via WASF3.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioblastoma , Neoplasm Invasiveness , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Neoplasm Invasiveness/genetics , Cell Line, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/pathology , CRISPR-Cas Systems , Gene Knockdown Techniques , Cell Movement/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
4.
Cell ; 145(5): 692-706, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21596426

ABSTRACT

Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.


Subject(s)
Antigens, Nuclear/metabolism , Histones/metabolism , Nerve Tissue Proteins/metabolism , Nucleosomes/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Cell Nucleus/metabolism , Chromatin/chemistry , Chromatin/metabolism , Histone Code , Histones/chemistry , Humans , Models, Molecular , Nucleosomes/chemistry , Peptides/chemistry , Peptides/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Xenopus
5.
Mol Cell ; 70(6): 985-986, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29932907

ABSTRACT

Buffering dosage imbalance of early- and late-replicating genes is important for dividing eukaryotic cells. Voichek et al. (2018) described critical roles of H3K4 methylation and Paf1C in this process, which was regulated by the S phase checkpoint and H3K56 acetylation.


Subject(s)
DNA Replication , Histones/genetics , Acetylation , Homeostasis , Methylation
6.
Genes Dev ; 32(5-6): 341-346, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29563185

ABSTRACT

The mixed-lineage leukemia (MLL)-AF10 fusion oncoprotein recruits DOT1L to the homeobox A (HOXA) gene cluster through its octapeptide motif leucine zipper (OM-LZ), thereby inducing and maintaining the MLL-AF10-associated leukemogenesis. However, the recognition mechanism between DOT1L and MLL-AF10 is unclear. Here, we present the crystal structures of both apo AF10OM-LZ and its complex with the coiled-coil domain of DOT1L. Disruption of the DOT1L-AF10 interface abrogates MLL-AF10-associated leukemic transformation. We further show that zinc stabilizes the DOT1L-AF10 complex and may be involved in the regulation of the HOXA gene expression. Our studies may also pave the way for the rational design of therapeutic drugs against MLL-rearranged leukemia.


Subject(s)
Cell Transformation, Neoplastic/pathology , Methyltransferases , Models, Molecular , Myeloid-Lymphoid Leukemia Protein , Transcription Factors , Crystallization , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase , Homeodomain Proteins/genetics , Humans , Methyltransferases/chemistry , Methyltransferases/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding , Protein Domains , Protein Structure, Quaternary , Structure-Activity Relationship , Transcription Factors/chemistry , Transcription Factors/metabolism , Zinc/chemistry
7.
J Biol Chem ; : 107791, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303915

ABSTRACT

Our current understanding of epigenetic regulation is deeply rooted in the founding contributions of Dr. C. David Allis. In 2002, Allis and colleagues first characterized the lysine methyltransferase activity of the mammalian KMT2A (MLL1), a paradigm shifting discovery that brings epigenetic dysregulation into focus for many human diseases that carry KMT2A mutations. This review will discuss the current understanding of the multifaceted roles of KMT2A in development and disease, which has paved the way for innovative and upcoming approaches to cancer therapy.

8.
Nature ; 576(7786): 301-305, 2019 12.
Article in English | MEDLINE | ID: mdl-31801997

ABSTRACT

A central aspect of aging research concerns the question of when individuality in lifespan arises1. Here we show that a transient increase in reactive oxygen species (ROS), which occurs naturally during early development in a subpopulation of synchronized Caenorhabditis elegans, sets processes in motion that increase stress resistance, improve redox homeostasis and ultimately prolong lifespan in those animals. We find that these effects are linked to the global ROS-mediated decrease in developmental histone H3K4me3 levels. Studies in HeLa cells confirmed that global H3K4me3 levels are ROS-sensitive and that depletion of H3K4me3 levels increases stress resistance in mammalian cell cultures. In vitro studies identified SET1/MLL histone methyltransferases as redox sensitive units of the H3K4-trimethylating complex of proteins (COMPASS). Our findings implicate a link between early-life events, ROS-sensitive epigenetic marks, stress resistance and lifespan.


Subject(s)
Longevity , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Caenorhabditis elegans , Down-Regulation , Histones/metabolism , Larva
9.
Mol Cell ; 62(2): 222-236, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27151440

ABSTRACT

PRDM16 is a transcription co-factor that plays critical roles in development of brown adipose tissue, as well as maintenance of adult hematopoietic and neural stem cells. Here we report that PRDM16 is a histone H3K4 methyltransferase on chromatin. Mutation in the N-terminal PR domain of PRDM16 abolishes the intrinsic enzymatic activity of PRDM16. We show that the methyltransferase activity of PRDM16 is required for specific suppression of MLL fusion protein-induced leukemogenesis both in vitro and in vivo. Mechanistic studies show that PRDM16 directly activates the SNAG family transcription factor Gfi1b, which in turn downregulates the HOXA gene cluster. Knockdown Gfi1b represses PRDM16-mediated tumor suppression, while Gfi1b overexpression mimics PRDM16 overexpression. In further support of the tumor suppressor function of PRDM16, silencing PRDM16 by DNA methylation is concomitant with MLL-AF9-induced leukemic transformation. Taken together, our study reveals a previously uncharacterized function of PRDM16 that depends on its PR domain activity.

10.
Int J Cancer ; 153(3): 552-570, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37140208

ABSTRACT

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-ß to the activin A pathway. We found that TGF-ß upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D. Loss of KMT2D induces the expression and secretion of activin A, which activates a noncanonical p38 MAPK-mediated pathway to modulate cancer cell plasticity, promote a mesenchymal phenotype, and enhance tumor invasion and metastasis in mice. We observed a decreased KMT2D expression in human primary and metastatic pancreatic cancer. Furthermore, inhibition or knockdown of activin A reversed the protumoral role of KMT2D loss. These findings support a tumor-suppressive role of KMT2D in pancreatic cancer and identify miR-147b and activin A as novel therapeutic targets.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , Animals , Mice , Cell Plasticity , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Activins/genetics , Pancreatic Neoplasms
11.
Biochem Soc Trans ; 51(1): 427-434, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36695549

ABSTRACT

The MLL/KMT2 family enzymes are frequently mutated in human cancers and congenital diseases. They deposit the majority of histone 3 lysine 4 (H3K4) mono-, di-, or tri-methylation in mammals and are tightly associated with gene activation. Structural and biochemical studies in recent years provide in-depth understanding of how the MLL1 and homologous yeast SET1 complexes interact with the nucleosome core particle (NCP) and how their activities for H3K4 methylation are regulated by the conserved core components. Here, we will discuss the recent single molecule cryo-EM studies on the MLL1 and ySET1 complexes bound on the NCP. These studies highlight the dynamic regulation of the MLL/SET1 family lysine methyltransferases with unique features as compared with other histone lysine methyltransferases. These studies provide insights for loci-specific regulation of H3K4 methylation states in cells. The mechanistic studies on the MLL1 complex have already led to the development of the MLL1 inhibitors that show efficacy in acute leukemia and metastatic breast cancers. Future studies on the MLL/SET1 family enzymes will continue to bring to light potential therapeutic opportunities.


Subject(s)
Histones , Myeloid-Lymphoid Leukemia Protein , Animals , Humans , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Lysine/metabolism , Cell Nucleus/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mammals/metabolism
12.
Immunity ; 40(5): 772-784, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24816405

ABSTRACT

Little is known about how the immune system impacts human colorectal cancer invasiveness and stemness. Here we detected interleukin-22 (IL-22) in patient colorectal cancer tissues that was produced predominantly by CD4(+) T cells. In a mouse model, migration of these cells into the colon cancer microenvironment required the chemokine receptor CCR6 and its ligand CCL20. IL-22 acted on cancer cells to promote activation of the transcription factor STAT3 and expression of the histone 3 lysine 79 (H3K79) methytransferase DOT1L. The DOT1L complex induced the core stem cell genes NANOG, SOX2, and Pou5F1, resulting in increased cancer stemness and tumorigenic potential. Furthermore, high DOT1L expression and H3K79me2 in colorectal cancer tissues was a predictor of poor patient survival. Thus, IL-22(+) cells promote colon cancer stemness via regulation of stemness genes that negatively affects patient outcome. Efforts to target this network might be a strategy in treating colorectal cancer patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Interleukins/immunology , Methyltransferases/immunology , Neoplastic Stem Cells/immunology , STAT3 Transcription Factor/immunology , Animals , Cell Line, Tumor , Cell Proliferation , Chemokine CCL20/immunology , Chemokine CCL20/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Enzyme Activation/immunology , HT29 Cells , Histone-Lysine N-Methyltransferase , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Methyltransferases/metabolism , Mice , Nanog Homeobox Protein , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Octamer Transcription Factor-3/immunology , Octamer Transcription Factor-3/metabolism , Receptors, CCR6/immunology , Receptors, CCR6/metabolism , SOXB1 Transcription Factors/immunology , SOXB1 Transcription Factors/metabolism , STAT3 Transcription Factor/metabolism , Interleukin-22
13.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513732

ABSTRACT

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Repetitive Sequences, Nucleic Acid/physiology , Animals , Epigenomics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Methylation , Methyltransferases/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/metabolism
14.
Biochemistry ; 61(13): 1260-1272, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35748495

ABSTRACT

Epigenetic reader domains regulate chromatin structure and modulate gene expression through the recognition of post-translational modifications on histones. Recently, reader domains have also been found to harbor double-stranded (ds) DNA-binding activity, which is as functionally critical as histone association. Here, we explore the dsDNA recognition of the N-terminal bromodomain of the bromodomain and extra-terminal (BET) protein, BRD4. Using protein-observed 19F NMR, 1H-15N HSQC NMR, electrophoretic mobility shift assays (EMSA), and competitive-inhibition assays, we establish the binding surface of dsDNA and find it to be largely overlapping with the acetylated histone (KAc)-binding site. Rather than engaging in electrostatic contacts, we find dsDNA to interact competitively within the KAc-binding pocket. These interactions are distinct from the highly homologous BET bromodomain, BRDT. Nine additional bromodomains have also been characterized for interacting with dsDNA, including tandem BET bromodomains. Together, these studies help establish a binding model for dsDNA interactions with BRD4 bromodomains and elucidate the chromatin-recognition mechanisms of the BRD4 protein for regulating gene expression.


Subject(s)
Histones , Nuclear Proteins , Chromatin , DNA , Histones/metabolism , Nuclear Proteins/metabolism , Transcription Factors/chemistry
15.
Biochemistry ; 61(1): 1-9, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34928138

ABSTRACT

Cryo-EM structures of the KMT2A/MLL1 core complex bound on nucleosome core particles (NCPs) suggest unusual rotational dynamics of the MLL1 complex approaching its physiological substrate. However, the functional implication of such dynamics remains unclear. Here, we show that the MLL1 core complex also shows high rotational dynamics bound on the NCP carrying the catalytically inert histone H3 lysine 4 to methionine (K4M) mutation. There are two major binding modes of the MLL1 complex on the NCPK4M. Importantly, disruption of only one of the binding modes compromised the overall MLL1 activity in an NCP-specific manner. We propose that the MLL1 core complex probably exists in an equilibrium of poised and active binding modes. The high rotational dynamics of the MLL1 complex on the NCP is a feature that can be exploited for loci-specific regulation of H3K4 methylation in higher eukaryotes.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Nucleosomes/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/ultrastructure , Histones/metabolism , Humans , Methylation , Models, Molecular , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/ultrastructure , Protein Binding , Protein Conformation
16.
J Biol Chem ; 296: 100235, 2021.
Article in English | MEDLINE | ID: mdl-33376138

ABSTRACT

Epigenetic mechanisms that alter heritable gene expression and chromatin structure play an essential role in many biological processes, including liver function. Human MOF (males absent on the first) is a histone acetyltransferase that is globally downregulated in human steatohepatitis. However, the function of MOF in the liver remains unclear. Here, we report that MOF plays an essential role in adult liver. Genetic deletion of Mof by Mx1-Cre in the liver leads to acute liver injury, with increase of lipid deposition and fibrosis akin to human steatohepatitis. Surprisingly, hepatocyte-specific Mof deletion had no overt liver abnormality. Using the in vitro coculturing experiment, we show that Mof deletion-induced liver injury requires coordinated changes and reciprocal signaling between hepatocytes and Kupffer cells, which enables feedforward regulation to augment inflammation and apoptotic responses. At the molecular level, Mof deletion induced characteristic changes in metabolic gene programs, which bore noticeable similarity to the molecular signature of human steatohepatitis. Simultaneous deletion of Mof in both hepatocytes and macrophages results in enhanced expression of inflammatory genes and NO signaling in vitro. These changes, in turn, lead to apoptosis of hepatocytes and lipotoxicity. Our work highlights the importance of histone acetyltransferase MOF in maintaining metabolic liver homeostasis and sheds light on the epigenetic dysregulation in liver pathogenesis.


Subject(s)
Histone Acetyltransferases/genetics , Inflammation/metabolism , Liver Diseases/genetics , Liver/injuries , Nitric Oxide/genetics , Apoptosis/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Deletion , Gene Expression Regulation/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Histone Acetyltransferases/chemistry , Humans , Inflammation/genetics , Inflammation/pathology , Lipids/adverse effects , Lipids/genetics , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology , Macrophages/metabolism , Macrophages/pathology , Nitric Oxide/metabolism , Signal Transduction/genetics
17.
Blood ; 136(26): 2975-2986, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33150381

ABSTRACT

Hematopoietic stem cells (HSC) self-renew to sustain stem cell pools and differentiate to generate all types of blood cells. HSCs remain in quiescence to sustain their long-term self-renewal potential. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis, and metabolic activities are profoundly reduced. Here, we report that protein quality control via endoplasmic reticulum-associated degradation (ERAD) governs the function of quiescent HSCs. The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyperproliferation, which leads to complete loss of HSC self-renewal and HSC depletion. Mechanistically, ERAD deficiency via Sel1L knockout leads to activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, we identify Ras homolog enriched in brain (Rheb), an activator of mTOR, as a novel protein substrate of Sel1L/Hrd1 ERAD, which accumulates upon Sel1L deletion and HSC activation. Importantly, inhibition of mTOR, or Rheb, rescues HSC defects in Sel1L knockout mice. Protein quality control via ERAD is, therefore, a critical checkpoint that governs HSC quiescence and self-renewal by Rheb-mediated restriction of mTOR activity.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Hematopoietic Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Endoplasmic Reticulum/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , TOR Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Nature ; 530(7591): 447-52, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26886794

ABSTRACT

The mixed lineage leukaemia (MLL) family of proteins (including MLL1-MLL4, SET1A and SET1B) specifically methylate histone 3 Lys4, and have pivotal roles in the transcriptional regulation of genes involved in haematopoiesis and development. The methyltransferase activity of MLL1, by itself severely compromised, is stimulated by the three conserved factors WDR5, RBBP5 and ASH2L, which are shared by all MLL family complexes. However, the molecular mechanism of how these factors regulate the activity of MLL proteins still remains poorly understood. Here we show that a minimized human RBBP5-ASH2L heterodimer is the structural unit that interacts with and activates all MLL family histone methyltransferases. Our structural, biochemical and computational analyses reveal a two-step activation mechanism of MLL family proteins. These findings provide unprecedented insights into the common theme and functional plasticity in complex assembly and activity regulation of MLL family methyltransferases, and also suggest a universal regulation mechanism for most histone methyltransferases.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Enzyme Activation , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Transcription Factors/chemistry , Transcription Factors/metabolism
19.
Mol Cell ; 54(6): 920-931, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24837678

ABSTRACT

Histone H2B ubiquitination plays an important role in transcription regulation. It has been shown that H2B ubiquitination is regulated by multiple upstream events associated with elongating RNA polymerase. Here we demonstrate that H2B K34 ubiquitylation by the MOF-MSL complex is part of the protein networks involved in early steps of transcription elongation. Knocking down MSL2 in the MOF-MSL complex affects not only global H2BK34ub, but also multiple cotranscriptionally regulated histone modifications. More importantly, we show that the MSL, PAF1, and RNF20/40 complexes are recruited and stabilized at active gene promoters by direct binary interactions. The stabilized complexes serve to regulate chromatin association of pTEFb through a positive feedback loop and facilitate Pol II transition during early transcription elongation. Results from our biochemical studies are underscored by genome-wide analyses that show high RNA Pol II processivity and transcription activity at MSL target genes.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Histones/chemistry , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Antibodies/immunology , Binding Sites/genetics , Cell Line, Tumor , Chromatin/genetics , Gene Expression Regulation , Genome-Wide Association Study , HeLa Cells , Histone Acetyltransferases/chemistry , Histones/immunology , Humans , Promoter Regions, Genetic , Protein Binding/genetics , RNA Interference , RNA, Small Interfering , Transcription Factors , Transcription, Genetic , Ubiquitin-Protein Ligases/chemistry
20.
Mol Cell ; 53(2): 247-61, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24389101

ABSTRACT

Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research.


Subject(s)
Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Leukemia, Biphenotypic, Acute/enzymology , Myeloid-Lymphoid Leukemia Protein/metabolism , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Humans , Intracellular Signaling Peptides and Proteins , Mice , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Oligopeptides/chemistry , Oligopeptides/physiology , Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL