Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cell ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38917788

ABSTRACT

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

2.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534465

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proteogenomics , Adenocarcinoma/diagnosis , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Pancreatic Ductal/diagnosis , Cohort Studies , Endothelial Cells/metabolism , Epigenesis, Genetic , Female , Gene Dosage , Genome, Human , Glycolysis , Glycoproteins/biosynthesis , Humans , Male , Middle Aged , Molecular Targeted Therapy , Pancreatic Neoplasms/diagnosis , Phenotype , Phosphoproteins/metabolism , Phosphorylation , Prognosis , Protein Kinases/metabolism , Proteome/metabolism , Substrate Specificity , Transcriptome/genetics
3.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358469

ABSTRACT

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Proteogenomics , Acetylation , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Ubiquitination
4.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33212010

ABSTRACT

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Molecular Targeted Therapy , Proteogenomics , APOBEC Deaminases/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cohort Studies , DNA Damage , DNA Repair , Female , Humans , Immunotherapy , Metabolomics , Middle Aged , Mutagenesis/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Receptor, ErbB-2/metabolism , Retinoblastoma Protein/metabolism , Tumor Microenvironment/immunology
5.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059776

ABSTRACT

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Proteome/genetics , Transcriptome , Acetylation , Animals , Antigens, Neoplasm/genetics , Carcinoma/immunology , Carcinoma/pathology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Female , Genomic Instability , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microsatellite Repeats , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
6.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
7.
Clin Proteomics ; 21(1): 7, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291365

ABSTRACT

BACKGROUND: Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS: We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS: Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS: Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.

8.
Plant J ; 105(5): 1400-1412, 2021 03.
Article in English | MEDLINE | ID: mdl-33280202

ABSTRACT

Casein kinase I (CK1), a ubiquitous Ser/Thr protein kinase in eukaryotes, plays a critical role in higher plant flowering. Arabidopsis CK1 family member MUT9-LIKE KINASEs, such as MLK1 and MLK3, have been shown to phosphorylate histone H3 at threonine 3 (H3T3), an evolutionarily conserved residue, and the modification is associated with the transcriptional repression of euchromatic and heterochromatic loci. This study demonstrates that mlk4-3, a T-DNA insertion mutant of MLK4, flowered late, and that overexpression of MLK4 caused early flowering. The nuclear protein MLK4 phosphorylated histone H3T3 both in vitro and in vivo, and this catalytic activity required the conserved lysine residue K175. mutation of MLK4 at K175 failed to restore the level of phosphorylated H3T3 (H3T3ph) or to complement the phenotypic defects of mlk4-3. The FLC/MAF-clade genes, including FLC, MAF4 and MAF5, were significantly upregulated in mlk4-3. The double mutant mlk4-3 flc-3 flowered earlier than mlk4-3, suggesting that functional FLC is crucial for flowering repression in mlk4-3. Chromatin immunoprecipitation assays showed that MLK4 bound to FLC/MAF chromatin and that H3T3ph occupancy at the promoter of FLC/MAF was negatively associated with its transcriptional level. In accordance, H3T3ph accumulated at FLC/MAF in 35S::MLK4/mlk4-3 but diminished in 35S::MLK4(K175R)/mlk4-3 plants. Moreover, the amount of RNA Pol II deposited at FLC/MAF was clearly enriched in mlk4-3 relative to the wild type. Therefore, MLK4-dependent phosphorylation of H3T3 contributes to accelerating flowering by repressing the transcription of negative flowering regulator FLC/MAF. This study sheds light on the delicate control of flowering by the plant-specific CK1, MLK4, via post-translational modification of histone H3.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin Immunoprecipitation , DNA, Bacterial/genetics , Phosphorylation/genetics , Phosphorylation/physiology
9.
Proc Natl Acad Sci U S A ; 115(28): E6659-E6667, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941559

ABSTRACT

The 3' end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3' to 5' exoribonuclease, acts in the degradation of unmethylated miRNAs and miRNA*s in Arabidopsis Loss-of-function mutations in ATRM2 partially suppress the morphological defects caused by HEN1 malfunction, with restored levels of a subset of miRNAs and receded expression of corresponding miRNA targets. Dysfunction of ATRM2 has negligible effect on miRNA trimming, and further increase the fertility of hen1 heso1 urt1, a mutant with an almost complete abolishment of miRNA uridylation, indicating that ATRM2 may neither be involved in 3' to 5' trimming nor be the enzyme that specifically degrades uridylated miRNAs. Notably, the fold changes of miRNAs and their corresponding miRNA*s were significantly correlated in hen1 atrm2 versus hen1 Unexpectedly, we observed a marked increase of 3' to 5' trimming of several miRNA*s but not miRNAs in ATRM2 compromised backgrounds. These data suggest an action of ATRM2 on miRNA/miRNA* duplexes, and the existence of an unknown exoribonuclease for specific trimming of miRNA*. This asymmetric effect on miRNA/miRNA* is likely related to Argonaute (AGO) proteins, which can distinguish miRNAs from miRNA*s. Finally, we show that ATRM2 colocalizes and physically interacts with Argonaute 1 (AGO1). Taken together, our results suggest that ATRM2 may be involved in the surveillance of unmethylated miRNA/miRNA* duplexes during the initiation step of RNA-induced silencing complex assembly.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Exoribonucleases/metabolism , MicroRNAs/metabolism , Mutation , RNA, Plant/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Exoribonucleases/genetics , Methylation , MicroRNAs/genetics , RNA, Plant/genetics
10.
Plant Physiol ; 177(3): 1142-1151, 2018 07.
Article in English | MEDLINE | ID: mdl-29784765

ABSTRACT

DAWDLE (DDL) is a conserved forkhead-associated (FHA) domain-containing protein with essential roles in plant development and immunity. It acts in the biogenesis of microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs), which regulate gene expression at the transcriptional and/or posttranscriptional levels. However, the functional mechanism of DDL and its impact on exogenous siRNAs remain elusive. Here, we report that DDL is required for the biogenesis of siRNAs derived from sense transgenes and inverted-repeat transgenes. Furthermore, we show that a mutation in the FHA domain of DDL disrupts the interaction of DDL with DICER-LIKE1 (DCL1), which is the enzyme that catalyzes miRNA maturation from primary miRNA transcripts (pri-miRNAs), resulting in impaired pri-miRNA processing. Moreover, we demonstrate that DDL interacts with DCL3, which is a DCL1 homolog responsible for siRNA production, and this interaction is crucial for optimal DCL3 activity. These results reveal that the interaction of DDL with DCLs is required for the biogenesis of miRNAs and siRNAs in Arabidopsis (Arabidopsis thaliana).


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , MicroRNAs/metabolism , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Mutation , Plants, Genetically Modified , Protein Domains , Ribonuclease III/genetics , Transgenes
11.
PLoS Genet ; 11(4): e1005091, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25928341

ABSTRACT

All types of small RNAs in plants, piwi-interacting RNAs (piRNAs) in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an) enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1) is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control.


Subject(s)
Arabidopsis Proteins/genetics , MicroRNAs/genetics , Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/genetics , RNA Stability/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Argonaute Proteins/genetics , RNA, Small Interfering/genetics , Uridine/metabolism
12.
Am J Physiol Gastrointest Liver Physiol ; 312(5): G464-G473, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28232457

ABSTRACT

Dicer processes microRNAs (miRs) into active forms in a wide variety of tissues, including the liver. To determine the role of Dicer in liver regeneration, we performed a series of in vivo and in vitro studies in a murine 2/3 hepatectomy model. Dicer was downregulated after 2/3 hepatectomy, and loss of Dicer inhibited liver regeneration associated with decreased cyclin A2 and miR-221, as well as increased levels of the cell cycle inhibitor p27. In vitro, miR-221 inhibited p27 production in primary hepatocytes and increased hepatocyte proliferation. Specific reconstitution of miR-221 in hepatocyte-specific Dicer-null mice inhibited p27 and restored liver regeneration. In wild type mice, targeted inhibition of miR-221 using a cholesterol-conjugated miR-221 inhibited hepatocyte proliferation after 2/3 hepatectomy. These results identify Dicer production of miR-221 as an essential component of a miRNA-dependent mechanism for suppression of p27 that controls the rate of hepatocyte proliferation after partial hepatectomy.NEW & NOTEWORTHY Our findings demonstrate a direct role for microRNAs in controlling the rate of liver regeneration after injury. By deleting Dicer, an enzyme responsible for processing microRNAs into mature forms, we determined miR-221 is a critical microRNA in the physiological process of restoration of liver mass after injury. miR-221 suppresses p27, releasing its inhibitory effects on hepatocyte proliferation. Pharmaceuticals based on miR-221 may be useful to modulate hepatocyte proliferation in the setting of liver injury.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/metabolism , DEAD-box RNA Helicases/metabolism , Hepatocytes/metabolism , Liver Regeneration/physiology , Liver/growth & development , MicroRNAs/metabolism , Ribonuclease III/metabolism , Animals , Cell Proliferation/physiology , Hepatectomy , Hepatocytes/cytology , Humans , Liver/cytology , Mice , Mice, Knockout
13.
Curr Genomics ; 18(4): 360-365, 2017 Aug.
Article in English | MEDLINE | ID: mdl-29081691

ABSTRACT

BACKGROUND: Recently, identification and functional studies of circular RNAs, a type of non-coding RNAs arising from a ligation of 3' and 5' ends of a linear RNA molecule, were conducted in mammalian cells with the development of RNA-seq technology. METHOD: Since compared with animals, studies on circular RNAs in plants are less thorough, a genome-wide identification of circular RNA candidates in Arabidopsis was conducted with our own developed bioinformatics tool to several existing RNA-seq datasets specifically for non-coding RNAs. RESULTS: A total of 164 circular RNA candidates were identified from RNA-seq data, and 4 circular RNA transcripts, including both exonic and intronic circular RNAs, were experimentally validated. Interestingly, our results show that circular RNA transcripts are enriched in the photosynthesis system for the leaf tissue and correlated to the higher expression levels of their parent genes. Sixteen out of all 40 genes that have circular RNA candidates are related to the photosynthesis system, and out of the total 146 exonic circular RNA candidates, 63 are found in chloroplast.

14.
Plant Physiol ; 164(1): 119-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24214534

ABSTRACT

Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant opaque2. Using γ-irradiation, we created opaque QPM variants to identify opaque2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize (Zea mays) functional genomics tool. A K0326Y QPM deletion mutant was null for the 27- and 50-kD γ-zeins and abolished vitreous endosperm formation. Illumina exon and RNA sequencing revealed a 1.2-megabase pair deletion encompassing the 27- and 50-kD γ-zein genes on chromosome 7 and a deletion of at least 232 kb on chromosome 9. Protein body number was reduced by over 90%, while protein body size is similar to the wild type. Kernels hemizygous for the γ-zein deletion had intermediate 27- and 50-kD γ-zein levels and were semivitreous, indicating haploinsufficiency of these gene products in opaque2 endosperm modification. The γ-zein deletion further increased lysine in QPM in its homozygous and hemizygous states. This work identifies 27-kD γ-zein as an opaque2 modifier gene within the largest QPM quantitative trait locus and may suggest the 50-kD γ-zein also contributes to this quantitative trait locus. It further demonstrates that genome-wide deletions in nonreference maize lines can be identified through a combination of assembly of Illumina reads against the B73 genome and integration of RNA sequencing data.


Subject(s)
Endosperm/genetics , Haploinsufficiency/genetics , Zea mays/genetics , Zein/genetics , Chromosomes, Plant , Exons , Gamma Rays , Gene Deletion , Gene Expression Regulation, Plant , Lysine/metabolism , Molecular Sequence Data , Mutagenesis , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , RNA, Plant , Zea mays/radiation effects
15.
Proc Natl Acad Sci U S A ; 109(31): 12817-21, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22802657

ABSTRACT

MicroRNAs (miRNAs) are regulators of gene expression in plants and animals. The biogenesis of miRNAs is precisely controlled to secure normal development of organisms. Here we report that TOUGH (TGH) is a component of the DCL1-HYL1-SERRATE complex that processes primary transcripts of miRNAs [i.e., primary miRNAs (pri-miRNAs)] into miRNAs in Arabidopsis. Lack of TGH impairs multiple DCL activities in vitro and reduces the accumulation of miRNAs and siRNAs in vivo. TGH is an RNA-binding protein, binds pri-miRNAs and precursor miRNAs in vivo, and contributes to pri-miRNA-HYL1 interaction. These results indicate that TGH might regulate abundance of miRNAs through promoting DCL1 cleavage efficiency and/or recruitment of pri-miRNAs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carrier Proteins/metabolism , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA, Plant/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , RNA, Plant/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Serrate-Jagged Proteins
16.
BMC Bioinformatics ; 15: 4, 2014 Jan 04.
Article in English | MEDLINE | ID: mdl-24387046

ABSTRACT

BACKGROUND: RNA silencing is a process triggered by 21-24 small RNAs to repress gene expression. Many organisms including plants use RNA silencing to regulate development and physiology, and to maintain genome stability. Plants possess two classes of small RNAs: microRNAs (miRNAs) and small interfering RNAs (siRNAs). The frameworks of miRNA and siRNA pathways have been established in the model plant, Arabidopsis thaliana (Arabidopsis). RESULTS: Here we report the identification of putative genes that are required for the generation and function of miRNAs and siRNAs in soybean and sorghum, based on knowledge obtained from Arabidopsis. The gene families, including DCL, HEN1, SE, HYL1, HST, RDR, NRPD1, NRPD2/NRPE2, NRPE1, and AGO, were analyzed for gene structures, phylogenetic relationships, and protein motifs. The gene expression was validated using RNA-seq, expressed sequence tags (EST), and reverse transcription PCR (RT-PCR). CONCLUSIONS: The identification of these components could provide not only insight into RNA silencing mechanism in soybean and sorghum but also basis for further investigation. All data are available at http://sysbio.unl.edu/.


Subject(s)
Glycine max/genetics , MicroRNAs/chemistry , RNA Interference , RNA, Small Interfering/genetics , Sorghum/genetics , Arabidopsis/genetics , Genes, Plant/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Phylogeny , RNA, Small Interfering/metabolism
17.
Amino Acids ; 46(6): 1459-69, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24623121

ABSTRACT

Phosphorylation is one of the most essential post-translational modifications in eukaryotes. Studies on kinases and their substrates are important for understanding cellular signaling networks. Because of the cost in time and labor associated with large-scale wet-bench experiments, computational prediction of phosphorylation sites becomes important and many computational tools have been developed in the recent decades. The prediction tools can be grouped into two categories: kinase-specific and non-kinase-specific tools. With more kinases being discovered by the new sequencing technologies, accurate non-kinase-specific prediction tools are highly desirable for whole-genome annotation in a wider variety of species. In this manuscript, a support vector machine is used to combine eight different sequence level scoring functions to predict phosphorylation sites. The attributes used by this work, including Shannon entropy, relative entropy, predicted protein secondary structure, predicted protein disorder, solvent accessible area, overlapping properties, averaged cumulative hydrophobicity, and k-nearest neighbor, were able to obtain better results than the previously used attributes by other similar methods. This method achieved AUC values of 0.8405/0.8183/0.7383 for serine (S), threonine (T), and tyrosine (Y) phosphorylation sites, respectively, in animals with a tenfold cross-validation. The model trained by the animal phosphorylation sites was also applied to a plant phosphorylation site dataset as an independent test. The AUC values for the independent test dataset were 0.7761/0.6652/0.5958 for S/T/Y phosphorylation sites, which compared favorably with those of several existing methods. A web server based on our method was constructed for public use. The server, trained model, and all datasets used in the current study are available at http://sysbio.unl.edu/PhosphoSVM .


Subject(s)
Binding Sites , Computational Biology/methods , Phosphorylation , Protein Kinases/metabolism , Support Vector Machine , Amino Acid Sequence , Hydrophobic and Hydrophilic Interactions
18.
iScience ; 27(3): 109179, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439961

ABSTRACT

Urothelial carcinoma in situ (CIS) is an aggressive phenotype of non-muscle-invasive bladder cancer. Molecular features unique to CIS compared to high-grade papillary tumors are underexplored. RNA sequencing of CIS, papillary tumors, and normal urothelium showed lower immune marker expression in CIS compared to papillary tumors. We identified a 46-gene expression signature in CIS samples including selectively upregulated known druggable targets MTOR, TYK2, AXIN1, CPT1B, GAK, and PIEZO1 and selectively downregulated BRD2 and NDUFB2. High expression of selected genes was significantly associated with CIS in an independent dataset. Mutation analysis of matched CIS and papillary tumors revealed shared mutations between samples across time points and mutational heterogeneity. CCDC138 was the most frequently mutated gene in CIS. The immunological landscape showed higher levels of PD-1-positive cells in CIS lesions compared to papillary tumors. We identified CIS lesions to have distinct characteristics compared to papillary tumors potentially contributing to the aggressive phenotype.

19.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260423

ABSTRACT

ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the most negatively correlated protein with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptor, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.

20.
BMC Bioinformatics ; 14 Suppl 13: S10, 2013.
Article in English | MEDLINE | ID: mdl-24268301

ABSTRACT

BACKGROUND: Transcription factors have been studied intensively because they play an important role in gene expression regulation. However, the transcription factors in the CPP family (cystein-rich polycomb-like protein), compared with other transcription factor families, have not received sufficient attention, despite their wide prevalence in a broad spectrum of species, from plants to animals. The total number of known CPP transcription factors in plants is 111 from 16 plants, but only 2 of them have been studied so far, namely TSO1 and CPP1 in Arabidopsis thaliana and soybean, respectively. METHODS: In this work, to study their functions, we applied the fuzzy clustering method to all plant CPP transcription factors. The feature vector of each protein sequence for the fuzzy clustering method is encoded by the short length peptides and the combination of functional domain models. RESULTS AND CONCLUSIONS: With the fuzzy clustering method, all plant CPP transcription factors are grouped into two subfamilies. A systems approach, including Expressed Sequence Tag analysis, evolutionary analysis, protein-protein interaction network analysis and co-expression analysis, is employed to validate the clustering results, the results of which also indicates that the transcription factors from different subfamilies show uncorrelated responses.


Subject(s)
Cluster Analysis , Cysteine/genetics , Fuzzy Logic , Plant Proteins/genetics , Protein Interaction Mapping , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL