Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Neuroimage ; 284: 120439, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939889

ABSTRACT

Stereoelectroencephalography (SEEG) offers unique neural data from in-depth brain structures with fine temporal resolutions to better investigate the origin of epileptic brain activities. Although oscillatory patterns from different frequency bands and functional connectivity computed from the SEEG datasets are employed to study the epileptic zones, direct electrical stimulation-evoked electrophysiological recordings of synaptic responses, namely cortical-cortical evoked potentials (CCEPs), from the same SEEG electrodes are not explored for the localization of epileptic zones. Here we proposed a two-stream model with unsupervised learning and graph convolutional network tailored to the SEEG and CCEP datasets in individual patients to perform localization of epileptic zones. We compared our localization results with the clinically marked electrode sites determined for surgical resections. Our model had good classification capability when compared to other state-of-the-art methods. Furthermore, based on our prediction results we performed group-level brain-area mapping analysis for temporal, frontal and parietal epilepsy patients and found that epileptic and non-epileptic brain networks were distinct in patients with different types of focal epilepsy. Our unsupervised data-driven model provides personalized localization analysis for the epileptic zones. The epileptic and non-epileptic brain areas disclosed by the prediction model provide novel insights into the network-level pathological characteristics of epilepsy.


Subject(s)
Epilepsies, Partial , Epilepsy , Humans , Brain , Evoked Potentials/physiology , Brain Mapping/methods , Electroencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL