Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Microbiol ; 8: 1502, 2017.
Article in English | MEDLINE | ID: mdl-28848517

ABSTRACT

Twelve mature (aged 5-16 years) horses and ponies of mixed breed and type were fed restricted (1.25% BM Dry matter) quantities of one of two fiber based diets formulated to be iso-caloric. Diet 1 comprised of 0.8% body mass (BM) of chaff based complete feed plus 0.45% BM low energy grass hay (the same hay used for both diets). Diet 2 comprised 0.1% BM of a nutrient balancer plus 1.15% BM grass hay. Fecal samples were collected at week 10 and week 16. DNA was extracted and the V1-V2 regions of 16SrDNA were 454-pyrosequenced to investigate the bacterial microbiome of the horse. The two most abundant phyla found in both diets and sampling periods were the Firmicutes and Bacteroidetes. There was a clear reduction in Bacteroidetes with a concordant increase in Firmicutes over time. There was a limited degree of stability within the bacterial community of the hindgut of horses, with 65% of bacteria retained, over a 6 week period whilst on a uniform diet. The presence of a core community defined by being present in all samples (each animal/diet combination) included in the study and being present at 0.1% relative abundance (or greater) was identified. In total 65 operational taxonomic units (OTUs) were identified that fit the definition of core making up 21-28% of the total sequences recovered. As with total population the most abundant phyla were the Bacteroidetes followed by the Firmicutes, however there was no obvious shift in phyla due to period. Indeed, when the relative abundance of OTUs was examined across diets and periods there was no significant effect of diet or period alone or in combination on the relative abundance of the core OTUs.

2.
PLoS One ; 9(2): e87424, 2014.
Article in English | MEDLINE | ID: mdl-24504261

ABSTRACT

Faecal samples were collected from seventeen animals, each fed three different diets (high fibre, high fibre with a starch rich supplement and high fibre with an oil rich supplement). DNA was extracted and the V1-V2 regions of 16SrDNA were 454-pyrosequenced to investigate the faecal microbiome of the horse. The effect of age was also considered by comparing mature (8 horses aged 5-12) versus elderly horses (9 horses aged 19-28). A reduction in diversity was found in the elderly horse group. Significant differences between diets were found at an OTU level (52 OTUs at corrected Q<0.1). The majority of differences found were related to the Firmucutes phylum (37) with some changes in Bacteroidetes (6), Proteobacteria (3), Actinobacteria (2) and Spirochaetes (1). For the forage only diet,with no added starch or oil, we found 30/2934 OTUs (accounting for 15.9% of sequences) present in all horses. However the core (i.e. present in all horses) associated with the oil rich supplemented diet was somewhat smaller (25/3029 OTUs, 10.3% ) and the core associated with the starch rich supplemented diet was even smaller (15/2884 OTUs, 5.4% ). The core associated with samples across all three diets was extremely small (6/5689 OTUs accounting for only 2.3% of sequences) and dominated by the order Clostridiales, with the most abundant family being Lachnospiraceae. In conclusion, forage based diets plus starch or oil rich complementary feeds were associated with differences in the faecal bacterial community compared with the forage alone. Further, as observed in people, ageing is associated with a reduction in bacterial diversity. However there was no change in the bacterial community structure in these healthy animals associated with age.


Subject(s)
Bacteria/drug effects , Dietary Fats, Unsaturated/pharmacology , Dietary Fiber/pharmacology , Feces/microbiology , Feeding Behavior/drug effects , Sequence Analysis, DNA/methods , Starch/pharmacology , Aging/physiology , Animals , Biodiversity , Horses , Phylogeny
3.
PLoS One ; 8(10): e77660, 2013.
Article in English | MEDLINE | ID: mdl-24204908

ABSTRACT

The horse has a rich and complex microbial community within its gastrointestinal tract that plays a central role in both health and disease. The horse receives much of its dietary energy through microbial hydrolysis and fermentation of fiber predominantly in the large intestine/hindgut. The presence of a possible core bacterial community in the equine large intestine was investigated in this study. Samples were taken from the terminal ileum and 7 regions of the large intestine from ten animals, DNA extracted and the V1-V2 regions of 16SrDNA 454-pyrosequenced. A specific group of OTUs clustered in all ileal samples and a distinct and different signature existed for the proximal regions of the large intestine and the distal regions. A core group of bacterial families were identified in all gut regions with clear differences shown between the ileum and the various large intestine regions. The core in the ileum accounted for 32% of all sequences and comprised of only seven OTUs of varying abundance; the core in the large intestine was much smaller (5-15% of all sequences) with a much larger number of OTUs present but in low abundance. The most abundant member of the core community in the ileum was Lactobacillaceae, in the proximal large intestine the Lachnospiraceae and in the distal large intestine the Prevotellaceae. In conclusion, the presence of a core bacterial community in the large intestine of the horse that is made up of many low abundance OTUs may explain in part the susceptibility of horses to digestive upset.


Subject(s)
Bacteria/genetics , Horses/microbiology , Intestine, Large/microbiology , Animals , DNA, Bacterial/genetics , Ileum/microbiology , RNA, Ribosomal, 16S/genetics
4.
PLoS One ; 8(9): e75079, 2013.
Article in English | MEDLINE | ID: mdl-24040388

ABSTRACT

The horse, as a hindgut fermenter, is reliant on its intestinal bacterial population for efficient diet utilisation. However, sudden disturbance of this population can result in severe colic or laminitis, both of which may require euthanasia. This study therefore aimed to determine the temporal stability of the bacterial population of faecal samples from six ponies maintained on a formulated high fibre diet. Bacterial 16S rRNA terminal restriction fragment length polymorphism (TRFLP) analyses of 10 faecal samples collected from 6 ponies at regular intervals over 72 hour trial periods identified a significant pony-specific profile (P<0.001) with strong stability. Within each pony, a significantly different population was found after 11 weeks on the same diet (P<0.001) and with greater intra-individual similarity. Total short chain fatty acid (SCFA) concentration increased in all ponies, but other changes (such as bacterial population diversity measures, individual major SCFA concentration) were significant and dependent on the individual. This study is the first to report the extent of stability of microbes resident in the intestinal tract as represented with such depth and frequency of faecal sampling. In doing so, this provides a baseline from which future trials can be planned and the extent to which results may be interpreted.


Subject(s)
Feces/microbiology , Horses/microbiology , Intestines/microbiology , Microbiota , Animals , DNA, Bacterial/genetics , Fatty Acids, Volatile/metabolism , Metabolomics , Polymorphism, Restriction Fragment Length , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Time Factors
5.
FEMS Microbiol Ecol ; 82(3): 642-52, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22757649

ABSTRACT

The microbiome and associated metabolome of faecal samples were compared to those from the caecum and right dorsal colon of horses and ponies euthanised for nonresearch purposes by investigating the microbial population community structure as well as their functional metabolic products. Through the use of 16S rRNA gene dendrograms, the caecum microbiome was shown to cluster separately from the other gut regions. 16S rRNA gene-based quantitative PCR (q-PCR) also demonstrated differences between the caecum and the other gut regions. Metabolites as identified by Fourier transform infrared clustered in a similar way and specific metabolic products (volatile fatty acids and ammonia) also varied by region. Protozoal 18S rDNA concentration and archaeal mcrA gene concentration quantified by q-PCR were found in higher numbers in the colon than the other gut regions. Diversity calculations using Simpson and Shannon-Wiener indices demonstrated higher diversity in the right dorsal colon and faeces than in the caecum. All findings of this study suggest that faecal samples are likely to represent the microbial population of the right dorsal colon to some extent but not that of the caecum, indicating careful consideration is required when planning microbial investigations of the hindgut of the horse.


Subject(s)
Cecum/microbiology , Colon/microbiology , Horses/microbiology , Metabolome , Metagenome , Animals , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Cecum/metabolism , Colon/metabolism , DNA, Ribosomal/genetics , Fatty Acids, Volatile/analysis , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL