Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144771

ABSTRACT

Cannabis-infused product manufacturers often add terpenes to enhance flavor. Meanwhile, labeling requirements for these same products necessitate testing for residual solvent levels. We have found that heating terpene samples containing an oxygen or air atmosphere results in the detection of significantly higher levels of acetone when compared to the same compound in argon atmosphere using temperature regimes common to headspace autosampler routines. This formation was statistically significant (p = 0.05) for most of the predominant terpenes found in cannabis. The largest increase in acetone formation was seen for terpinolene which showed an 885% increase in oxygen atmosphere (4603.6 PPM) when compared to analysis under argon (519.9 PPM). Cannabinoids were shown to reduce this formation and explain why high levels of acetone are not reported in cannabis extracts, even though these can contain up to 40% terpenes.


Subject(s)
Cannabinoids , Cannabis , Acetone , Argon , Artifacts , Cannabinoids/analysis , Oxygen , Solvents , Terpenes/analysis
2.
J Am Coll Nutr ; 34(4): 347-58, 2015.
Article in English | MEDLINE | ID: mdl-25856323

ABSTRACT

BACKGROUND: Few natural products have demonstrated the range of protective and therapeutic promise as have turmeric and its principal bioactive components: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Success in translating this potential into tangible benefits has been limited by inherently poor intestinal absorption, rapid metabolism, and limited systemic bioavailability. Seeking to overcome these limitations, food ingredient formulators have begun to employ a variety of approaches to enhance absorption and bioactivity. Many of these strategies improve upon the age-old practice of consuming turmeric in fat-based sauces, such as in a fat-rich yellow curry. However, there exists uncertainty as to how the various commercially available offerings compare to each other in terms of either uptake or efficacy, and this uncertainty leaves physicians and nutritionists with a dearth of data for making recommendations to interested patients and consumers. Further complicating the issue are recent data suggesting that formulation strategies may not equally enhance the absorption of individual curcuminoids, a significant issue in that these curcuminoids exhibit somewhat different physiologic properties. OBJECTIVE: This review introduces needed order to the curcumin marketplace by examining bioavailability studies on a number of commercial curcumin ingredients and evaluating them on a level playing field. METHODS: The comparative analysis includes standard pharmacokinetic parameters and a new metric, relative mass efficiency (E). Relative mass efficiency allows for the comparison of different formulations even in cases in which the weight percentage of curcuminoids is vastly different. RESULTS: A hydrophilic carrier dispersed curcuminoid formula exhibits 45.9 times the bioavailability of the standard purified 95 percent curcuminoid preparation and, based on relative mass efficiency, 1.5 times the bioavailability of the next best commercial ingredient, a cyclodextrin complex. CONCLUSIONS: Delivery strategies can significantly improve the bioavailability of curcuminoids. Total formula mass is important for making practical formulation decisions about dosing, cost and space.


Subject(s)
Commerce , Curcuma/chemistry , Curcumin/pharmacokinetics , Intestinal Absorption , Plant Extracts/pharmacokinetics , Biological Availability , Curcumin/analogs & derivatives , Humans
SELECTION OF CITATIONS
SEARCH DETAIL