Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Immunol ; 20(1): 50-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30478397

ABSTRACT

Recent advances highlight a pivotal role for cellular metabolism in programming immune responses. Here, we demonstrate that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) regulates macrophage immune function in aging and inflammation. Isotope tracer studies revealed that macrophage NAD+ derives substantially from KP metabolism of tryptophan. Genetic or pharmacological blockade of de novo NAD+ synthesis depleted NAD+, suppressed mitochondrial NAD+-dependent signaling and respiration, and impaired phagocytosis and resolution of inflammation. Innate immune challenge triggered upstream KP activation but paradoxically suppressed cell-autonomous NAD+ synthesis by limiting the conversion of downstream quinolinate to NAD+, a profile recapitulated in aging macrophages. Increasing de novo NAD+ generation in immune-challenged or aged macrophages restored oxidative phosphorylation and homeostatic immune responses. Thus, KP-derived NAD+ operates as a metabolic switch to specify macrophage effector responses. Breakdown of de novo NAD+ synthesis may underlie declining NAD+ levels and rising innate immune dysfunction in aging and age-associated diseases.


Subject(s)
Aging/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/immunology , Macrophages/physiology , Mitochondria/metabolism , NAD/metabolism , Animals , Cells, Cultured , Homeostasis , Immunity, Innate , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Phosphorylation , Pentosyltransferases/genetics , Phagocytosis , Signal Transduction , Tryptophan/metabolism
2.
Proc Natl Acad Sci U S A ; 120(11): e2215376120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897988

ABSTRACT

The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-myc , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Humans , Mice , Antigens, CD/metabolism , Ligands , Macrophages/metabolism , Neoplasms/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Proto-Oncogene Proteins c-myc/metabolism
3.
Proc Natl Acad Sci U S A ; 112(13): 4074-9, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775523

ABSTRACT

BCR-ABL1(+) precursor B-cell acute lymphoblastic leukemia (BCR-ABL1(+) B-ALL) is an aggressive hematopoietic neoplasm characterized by a block in differentiation due in part to the somatic loss of transcription factors required for B-cell development. We hypothesized that overcoming this differentiation block by forcing cells to reprogram to the myeloid lineage would reduce the leukemogenicity of these cells. We found that primary human BCR-ABL1(+) B-ALL cells could be induced to reprogram into macrophage-like cells by exposure to myeloid differentiation-promoting cytokines in vitro or by transient expression of the myeloid transcription factor C/EBPα or PU.1. The resultant cells were clonally related to the primary leukemic blasts but resembled normal macrophages in appearance, immunophenotype, gene expression, and function. Most importantly, these macrophage-like cells were unable to establish disease in xenograft hosts, indicating that lineage reprogramming eliminates the leukemogenicity of BCR-ABL1(+) B-ALL cells, and suggesting a previously unidentified therapeutic strategy for this disease. Finally, we determined that myeloid reprogramming may occur to some degree in human patients by identifying primary CD14(+) monocytes/macrophages in BCR-ABL1(+) B-ALL patient samples that possess the BCR-ABL1(+) translocation and clonally recombined VDJ regions.


Subject(s)
B-Lymphocytes/metabolism , Macrophages/cytology , Philadelphia Chromosome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adult , Aged , Animals , Antigens, CD19/metabolism , Cell Culture Techniques , Cell Differentiation , Cytokines/metabolism , Female , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Leukocytes/cytology , Lipopolysaccharide Receptors/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Prognosis
4.
J Allergy Clin Immunol ; 133(6): 1667-75, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24797421

ABSTRACT

BACKGROUND: Autosomal recessive loss-of-function mutations in dedicator of cytokinesis 8 (DOCK8) cause a combined immunodeficiency characterized by atopy, recurrent infections, and cancer susceptibility. A genotype-phenotype explanation for the variable disease expression is lacking. OBJECTIVE: We investigated whether reversions contributed to the variable disease expression. METHODS: Patients followed at the National Institutes of Health's Clinical Center were studied. We performed detailed genetic analyses and intracellular flow cytometry to detect DOCK8 protein expression within lymphocyte subsets. RESULTS: We identified 17 of 34 DOCK8-deficient patients who had germline mutations with variable degrees of reversion caused by somatic repair. Somatic repair of the DOCK8 mutations resulted from second-site mutation, original-site mutation, gene conversion, and intragenic crossover. Higher degrees of reversion were associated with recombination-mediated repair. DOCK8 expression was restored primarily within antigen-experienced T cells or natural killer cells but less so in naive T or B cells. Several patients exhibited multiple different repair events. Patients who had reversions were older and had less severe allergic disease, although infection susceptibility persisted. No patients were cured without hematopoietic cell transplantation. CONCLUSIONS: In patients with DOCK8 deficiency, only certain combinations of germline mutations supported secondary somatic repair. Those patients had an ameliorated disease course with longer survival but still had fatal complications or required hematopoietic cell transplantation. These observations support the concept that some DOCK8-immunodeficient patients have mutable mosaic genomes that can modulate disease phenotype over time.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , Phenotype , Adolescent , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Child , Child, Preschool , DNA Mutational Analysis , DNA Repair , Genotype , Germ-Line Mutation , Guanine Nucleotide Exchange Factors/metabolism , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/mortality , Immunophenotyping , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Cancer Discov ; 13(5): 1164-1185, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36856575

ABSTRACT

Therapeutic cancer vaccination seeks to elicit activation of tumor-reactive T cells capable of recognizing tumor-associated antigens (TAA) and eradicating malignant cells. Here, we present a cancer vaccination approach utilizing myeloid-lineage reprogramming to directly convert cancer cells into tumor-reprogrammed antigen-presenting cells (TR-APC). Using syngeneic murine leukemia models, we demonstrate that TR-APCs acquire both myeloid phenotype and function, process and present endogenous TAAs, and potently stimulate TAA-specific CD4+ and CD8+ T cells. In vivo TR-APC induction elicits clonal expansion of cancer-specific T cells, establishes cancer-specific immune memory, and ultimately promotes leukemia eradication. We further show that both hematologic cancers and solid tumors, including sarcomas and carcinomas, are amenable to myeloid-lineage reprogramming into TR-APCs. Finally, we demonstrate the clinical applicability of this approach by generating TR-APCs from primary clinical specimens and stimulating autologous patient-derived T cells. Thus, TR-APCs represent a cancer vaccination therapeutic strategy with broad implications for clinical immuno-oncology. SIGNIFICANCE: Despite recent advances, the clinical benefit provided by cancer vaccination remains limited. We present a cancer vaccination approach leveraging myeloid-lineage reprogramming of cancer cells into APCs, which subsequently activate anticancer immunity through presentation of self-derived cancer antigens. Both hematologic and solid malignancies derive significant therapeutic benefit from reprogramming-based immunotherapy. This article is highlighted in the In This Issue feature, p. 1027.


Subject(s)
Cancer Vaccines , Leukemia , Neoplasms , Animals , Mice , Antigen-Presenting Cells , Neoplasms/therapy , Antigens, Neoplasm , Immunotherapy
7.
J Exp Med ; 211(13): 2549-66, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25422492

ABSTRACT

DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin.


Subject(s)
Cell Shape/immunology , Guanine Nucleotide Exchange Factors/metabolism , Immunity , Killer Cells, Natural/pathology , Skin/immunology , Skin/virology , T-Lymphocytes/pathology , Animals , Apoptosis/drug effects , Cattle , Cell Adhesion/drug effects , Cell Nucleus/drug effects , Cell Nucleus/pathology , Cell Shape/drug effects , Chemokine CXCL12/pharmacology , Chemotaxis/drug effects , Collagen/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Female , Guanine Nucleotide Exchange Factors/deficiency , Humans , Immunity/drug effects , Immunologic Memory/drug effects , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , cdc42 GTP-Binding Protein/metabolism , p21-Activated Kinases/metabolism
8.
Dis Markers ; 29(3-4): 131-9, 2010.
Article in English | MEDLINE | ID: mdl-21178272

ABSTRACT

DOCK8 immunodeficiency syndrome (DIDS) is a combined immunodeficiency characterized by recurrent viral infections, severe atopy, and early onset malignancy. Genetic studies revealed large, unique deletions in patients from different families and ethnic backgrounds. Clinical markers of DIDS include atopic dermatitis, allergies, cutaneous viral infections, recurrent respiratory tract infections, and malignancy. Immune assessments showed T cell lymphopenia, hyper-IgE, hypo-IgM, and eosinophilia. The impaired lymphocyte functions in DIDS patients appear central for disease pathogenesis.


Subject(s)
Guanine Nucleotide Exchange Factors , Immunoglobulin E/analysis , Job Syndrome , Animals , Biomarkers/analysis , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Eosinophilia/immunology , Eosinophilia/metabolism , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Humans , Immunoglobulin E/biosynthesis , Job Syndrome/genetics , Job Syndrome/immunology , Job Syndrome/metabolism , Lymphopenia/immunology , Lymphopenia/metabolism , Mice , Mutation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL