Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(20): e2118510119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35561216

ABSTRACT

Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights. Therefore, we used mass spectrometry­based quantitative proteomics to compare the proteins in human submacular stromal tissue punches from donors who were homozygous for high-risk alleles at either Chr1 or Chr10 with those from donors who had protective haplotypes at these loci, all without clinical features of AMD. Additional comparisons were made with tissue from donors who were homozygous for high-risk Chr1 alleles and had early AMD. The Chr1 and Chr10 risk groups shared common changes compared with the low-risk group, particularly increased levels of mast cell­specific proteases, including tryptase, chymase, and carboxypeptidase A3. Histological analyses of submacular tissue from donors with genetic risk of AMD but without clinical features of AMD and from donors with Chr1 risk and AMD demonstrated increased mast cells, particularly the tryptase-positive/chymase-negative cells variety, along with increased levels of denatured collagen compared with tissue from low­genetic risk donors. We conclude that increased mast cell infiltration of the inner choroid, degranulation, and subsequent extracellular matrix remodeling are early events in AMD pathogenesis and represent a unifying mechanistic link between Chr1- and Chr10-mediated AMD.


Subject(s)
Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 1 , Macular Degeneration , Mast Cells , Peptide Hydrolases , Alleles , Choroid/enzymology , Choroid/pathology , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 10/genetics , Humans , Macular Degeneration/genetics , Macular Degeneration/pathology , Mast Cells/pathology , Peptide Hydrolases/genetics , Proteomics , Risk , Tryptases/metabolism
2.
Microbiology (Reading) ; 168(8)2022 08.
Article in English | MEDLINE | ID: mdl-35997594

ABSTRACT

Staphylococcus aureus bacteraemia (SAB) is a major cause of blood-stream infection (BSI) in both healthcare and community settings. While the underlying comorbidities of a patient significantly contributes to their susceptibility to and outcome following SAB, recent studies show the importance of the level of cytolytic toxin production by the infecting bacterium. In this study we demonstrate that this cytotoxicity can be determined directly from the diagnostic MALDI-TOF mass spectrum generated in a routine diagnostic laboratory. With further development this information could be used to guide the management and improve the outcomes for SAB patients.


Subject(s)
Bacteremia , Staphylococcal Infections , Bacteremia/diagnosis , Bacteremia/microbiology , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus
3.
J Proteome Res ; 20(1): 172-183, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32864978

ABSTRACT

With ever-increasing amounts of data produced by mass spectrometry (MS) proteomics and metabolomics, and the sheer volume of samples now analyzed, the need for a common open format possessing both file size efficiency and faster read/write speeds has become paramount to drive the next generation of data analysis pipelines. The Proteomics Standards Initiative (PSI) has established a clear and precise extensible markup language (XML) representation for data interchange, mzML, receiving substantial uptake; nevertheless, storage and file access efficiency has not been the main focus. We propose an HDF5 file format "mzMLb" that is optimized for both read/write speed and storage of the raw mass spectrometry data. We provide an extensive validation of the write speed, random read speed, and storage size, demonstrating a flexible format that with or without compression is faster than all existing approaches in virtually all cases, while with compression is comparable in size to proprietary vendor file formats. Since our approach uniquely preserves the XML encoding of the metadata, the format implicitly supports future versions of mzML and is straightforward to implement: mzMLb's design adheres to both HDF5 and NetCDF4 standard implementations, which allows it to be easily utilized by third parties due to their widespread programming language support. A reference implementation within the established ProteoWizard toolkit is provided.


Subject(s)
Programming Languages , Proteomics , Databases, Protein , Mass Spectrometry , Metabolomics , Software
4.
Biochem Biophys Res Commun ; 555: 89-94, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33813281

ABSTRACT

Sporadic Alzheimer's disease (sAD) is the commonest cause of age-related neurodegeneration but there are no available treatments with demonstrated disease-modifying actions. It is therefore relevant to study hitherto-unknown aspects of brain structure and function to seek new disease-related mechanisms that might be targeted by novel disease-modifying interventions. During hypothesis-generating proteomic investigations in a case-control study of sAD, we observed widespread elevations of haptoglobin and haemopexin in all six brain-regions studied, which together represent much of the brain. Measured perturbations were significant, with the posterior probability of upregulation generally >95% and haptoglobin doubling in expression levels on average across deep brain structures (hippocampus, entorhinal cortex and cingulate gyrus) as well as sensory and motor cortices, and cerebellum. Haptoglobin and haemopexin are often regarded as circulating proteins whose main functions are to bind, respectively, the strongly pro-inflammatory extracellular haemoglobin and haeme molecules that form following haemolysis, thereby promoting their clearance and suppressing damage they might otherwise cause, for example, acute kidney injury. To our knowledge, elevations in neither cerebral haptoglobin nor haemopexin have previously been linked to the pathogenesis of sAD. Post-mortem examination of these cases showed no signs of macroscopic cerebral haemorrhage. These findings demonstrate pervasive cerebral elevation of haptoglobin and haemopexin, consistent with low-level intracerebral leakage of haemoglobin and consequent haeme formation throughout sAD brain. They point to a widespread underlying microvasculopathy that facilitates erythrocyte leakage, thereby triggering elevated tissue-free haemoglobin and driving the measured elevations in haptoglobin and haemopexin.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Haptoglobins/analysis , Hemopexin/analysis , Aged , Blood-Brain Barrier/physiopathology , Brain/blood supply , Brain/physiopathology , Case-Control Studies , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/physiopathology , Female , Humans , Iron/analysis , Iron/metabolism , Male
5.
J Proteome Res ; 17(12): 4051-4060, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30270626

ABSTRACT

The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.


Subject(s)
Databases, Protein/standards , Peptide Library , Proteomics/methods , Animals , Humans , Tandem Mass Spectrometry/methods , Workflow
6.
Biochem Biophys Res Commun ; 482(4): 625-631, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27865831

ABSTRACT

Pancreatic islet ß-cells secrete the hormones insulin and amylin, and defective ß-cell function plays a central role in the pathogenesis of type-2 diabetes (T2D). Human amylin (hA, also termed hIAPP) misfolds and forms amyloid aggregates whereas orthologous mouse amylin does neither. Furthermore, hA elicits apoptosis in cultured ß-cells and ß-cell death in ex-vivo islets. In addition, hA-transgenic mice that selectively express hA in their ß-cells, manifest ß-cell apoptosis and progressive islet damage that leads to diabetes closely resembling that in patients with T2D. Aggregation of hA is thus linked to the causation of diabetes. We employed time-dependent thioflavin-T spectroscopy and ion-mobility mass spectrometry to screen potential suppressors of hA misfolding for anti-diabetic activity. We identified the dietary flavonol rutin as an inhibitor of hA-misfolding and measured its anti-diabetic efficacy in hA-transgenic mice. In vitro, rutin bound hA, suppressed misfolding, disaggregated oligomers and reverted hA-conformation towards the physiological. In hA-transgenic mice, measurements of glucose, fluid-intake, and body-weight showed that rutin-treatment slowed diabetes-progression by lowering of rates of elevation in blood glucose (P = 0.030), retarding deterioration from symptomatic diabetes to death (P = 0.014) and stabilizing body-weight (P < 0.0001). In conclusion, rutin treatment suppressed hA-aggregation in vitro and doubled the lifespan of diabetic mice (P = 0.011) by a median of 69 days compared with vehicle-treated control-diabetic hA-transgenic mice.


Subject(s)
Amyloid/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Islet Amyloid Polypeptide/metabolism , Protein Folding/drug effects , Rutin/therapeutic use , Amyloid/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Hypoglycemic Agents/pharmacology , Islet Amyloid Polypeptide/genetics , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Mice, Transgenic , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Proteostasis Deficiencies/drug therapy , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Rutin/pharmacology
7.
Mol Cell Proteomics ; 13(6): 1537-42, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24677029

ABSTRACT

The open XML format mzML, used for representation of MS data, is pivotal for the development of platform-independent MS analysis software. Although conversion from vendor formats to mzML must take place on a platform on which the vendor libraries are available (i.e. Windows), once mzML files have been generated, they can be used on any platform. However, the mzML format has turned out to be less efficient than vendor formats. In many cases, the naïve mzML representation is fourfold or even up to 18-fold larger compared with the original vendor file. In disk I/O limited setups, a larger data file also leads to longer processing times, which is a problem given the data production rates of modern mass spectrometers. In an attempt to reduce this problem, we here present a family of numerical compression algorithms called MS-Numpress, intended for efficient compression of MS data. To facilitate ease of adoption, the algorithms target the binary data in the mzML standard, and support in main proteomics tools is already available. Using a test set of 10 representative MS data files we demonstrate typical file size decreases of 90% when combined with traditional compression, as well as read time decreases of up to 50%. It is envisaged that these improvements will be beneficial for data handling within the MS community.


Subject(s)
Mass Spectrometry , Proteomics , Software , Algorithms , Databases, Protein , Numerical Analysis, Computer-Assisted
8.
Proteomics ; 15(8): 1419-27, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25663356

ABSTRACT

As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/.


Subject(s)
Tandem Mass Spectrometry/methods , Chromatography, Liquid , Data Display , Evaluation Studies as Topic , Humans , Proteomics , Signal Processing, Computer-Assisted
9.
Article in English | MEDLINE | ID: mdl-38527612

ABSTRACT

OBJECTIVES: Between 2016 and 2019, the proportion of Escherichia coli bloodstream infection (BSI) with resistance to at least one antibiotic increased nationally. Public health interventions implemented in response to the COVID-19 pandemic changed population contact patterns and healthcare systems, with consequent effects on epidemiological trends of numerous pathogens. We investigated the impact of COVID-19 restrictions on epidemiological trends of E. coli BSI antimicrobial resistance (AMR) across South West England. METHODS: We undertook a retrospective ecological analysis utilizing routine surveillance data of E. coli BSI cases reported to the UK Health Security Agency between 2016 and 2021. We analysed AMR trends for antimicrobial agents including amoxicillin-clavulanate, ciprofloxacin, piperacillin-tazobactam, gentamicin, third-generation cephalosporins and carbapenems before and after the implementation of COVID-19 restrictions (23 March 2020) using Bayesian segmented regression. RESULTS: We identified 19 055 cases. A total of 50.2% were male. Median age was 76 (interquartile range, 65-85 years). Piperacillin-tazobactam (-2.90% [95% highest density interval {HDI} -4.51%, -0.48%]) and ciprofloxacin (-2.40% [95% HDI -4.35%, 0.48%]) resistance demonstrated immediate step changes at the implementation of COVID-19 restrictions. Gentamicin (odds ratio [OR] 0.92 [95% HDI 0.76, 1.12]) and third-generation cephalosporins (OR 0.95 [95% HDI 0.80, 1.14]) exhibited decreasing annual resistance trends after the implementation of COVID-19 restrictions, with moderate evidence for a lower OR after restrictions as compared to the period before (gentamicin Bayes Factor = 5.10, third-generation cephalosporins Bayes Factor = 6.67). DISCUSSION: COVID-19 restrictions led to abrupt and longer term changes to E.coli BSI AMR. The immediate effects suggest altered transmission, whereas changes to resistant E. coli reservoirs may explain trend effects.

10.
Infect Dis Ther ; 13(9): 1963-1981, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023716

ABSTRACT

INTRODUCTION: Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress without microbiology guidance. When escalating, they should take account of how resistance to an initial antibiotic affects the probability of resistance to subsequent options. The term "escalation antibiogram" (EA) has been coined to describe this concept. One difficulty when applying the EA concept to clinical practice is understanding the uncertainty in results and how this changes for specific patient subgroups. METHODS: A Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative bloodstream infections based on phenotypic resistance data. The model generates a series of "credible" curves to fit the resistance data, each with the same probability of representing the true rate given the inherent uncertainty. To avoid overfitting, an integrated penalisation term adaptively smooths the curves given the level of evidence. RESULTS: Rates of resistance to empiric first-choice and potential escalation antibiotics were calculated for the whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of specific patient groups, including ICU (intensive care unit), haematolo-oncology, and paediatric patients. The model generated an expected value (posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient subgroup. For example, the posterior means of piperacillin/tazobactam resistance rates in Gram-negative bloodstream infection are different between patients on ICU and the general hospital population: 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1) respectively. The model can also estimate the probability of inferiority between two antibiotics for a specific patient population. Differences in optimal escalation antibiotic options between specific patient groups were noted. CONCLUSIONS: EA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, providing an estimate of local resistance rates, and a comparison of antibiotic options with a measure of the uncertainty in the data. We demonstrate that EAs calculated for the whole hospital population cannot be assumed to apply to specific patient group.

11.
Methods Mol Biol ; 2426: 141-162, 2023.
Article in English | MEDLINE | ID: mdl-36308689

ABSTRACT

seaMass is an R package for protein-level quantification, normalization, and differential expression analysis of proteomics mass spectrometry data after peptide identification, protein grouping, and feature-level quantification. Using the concept of a blocked experimental design, seaMass can analyze all common discovery proteomics paradigms, including label-free (e.g., Waters Progenesis input), SILAC (e.g., MaxQuant input), isotope labelling (e.g., SCIEX ProteinPilot iTraq and Thermo ProteomeDiscoverer TMT input), and data-independent acquisition (e.g., OpenSWATH-PyProphet input), and is able to scale to study with hundreds of assays or more. By utilizing hierarchical Bayesian modelling, seaMass assesses the quantification reliability of each feature and peptide across assays so that only those in consensus influence the resulting protein group quantification strongly. Similarly, unexplained variation in each individual assay is captured, providing both a metric for quality control and automatic down-weighting of suspect assays. To achieve this, each protein group-level quantification outputted by seaMass is accompanied by the standard deviation of its posterior uncertainty. Moreover, seaMass integrates a flexible differential expression analysis subsystem with false discovery rate control based on the popular MCMCglmm package for Bayesian mixed-effects modelling, and also provides uncertainty-aware principal components analysis. We provide a description for using seaMass to perform an end-to-end analysis using a real dataset associated with a published clinical proteomics study.


Subject(s)
Proteins , Proteomics , Proteomics/methods , Uncertainty , Reproducibility of Results , Bayes Theorem , Peptides , Proteome/metabolism
12.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37503045

ABSTRACT

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3 and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and a biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.

13.
Cells ; 12(21)2023 10 31.
Article in English | MEDLINE | ID: mdl-37947636

ABSTRACT

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.


Subject(s)
Neoplasms , T-Lymphocytes , Mice , Animals , CTLA-4 Antigen/metabolism , Carrier Proteins/metabolism , Neoplasms/metabolism , Immunotherapy
14.
Front Aging Neurosci ; 14: 893159, 2022.
Article in English | MEDLINE | ID: mdl-35754968

ABSTRACT

Sporadic Alzheimer's disease (sAD) is the commonest cause of age-related neurodegeneration and dementia globally, and a leading cause of premature disability and death. To date, the quest for a disease-modifying therapy for sAD has failed, probably reflecting our incomplete understanding of aetiology and pathogenesis. Drugs that target aggregated Aß/tau are ineffective, and metabolic defects are now considered to play substantive roles in sAD pathobiology. We tested the hypothesis that the recently identified, pervasive cerebral deficiency of pantothenate (vitamin B5) in sAD, might undermine brain energy metabolism by impairing levels of tricarboxylic acid (TCA)-cycle enzymes and enzyme complexes, some of which require the pantothenate-derived cofactor, coenzyme A (CoA) for their normal functioning. We applied proteomics to measure levels of the multi-subunit TCA-cycle enzymes and their cytoplasmic homologues. We analysed six functionally distinct brain regions from nine sAD cases and nine controls, measuring 33 cerebral proteins that comprise the nine enzymes of the mitochondrial-TCA cycle. Remarkably, we found widespread perturbations affecting only two multi-subunit enzymes and two enzyme complexes, whose function is modulated, directly or indirectly by CoA: pyruvate dehydrogenase complex, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and succinyl-CoA synthetase. The sAD cases we studied here displayed widespread deficiency of pantothenate, the obligatory precursor of CoA. Therefore, deficient cerebral pantothenate can damage brain-energy metabolism in sAD, at least in part through impairing levels of these four mitochondrial-TCA-cycle enzymes.

15.
J Cardiovasc Magn Reson ; 13: 80, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22168638

ABSTRACT

BACKGROUND: Right ventricular ejection fraction (RV-EF) has traditionally been used to measure and compare RV function serially over time, but may be a relatively insensitive marker of change in RV myocardial contractile function. We developed a cardiovascular magnetic resonance (CMR) tagging-based technique with a view to rapid and reproducible measurement of RV long axis function and applied it in patients with congenital heart disease. METHODS: We studied 84 patients: 56 with repaired Tetralogy of Fallot (rTOF); 28 with atrial septal defect (ASD): 13 with and 15 without pulmonary hypertension (RV pressure > 40 mmHG by echocardiography). For comparison, 20 healthy controls were studied. CMR acquisitions included an anatomically defined four chamber cine followed by a cine gradient echo-planar sequence in the same plane with a labelling pre-pulse giving a tag line across the basal myocardium. RV tag displacement was measured with automated registration and tracking of the tag line together with standard measurement of RV-EF. RESULTS: Mean RV displacement was higher in the control (26 ± 3 mm) than in rTOF (16 ± 4 mm) and ASD with pulmonary hypertension (18 ± 3 mm) groups, but lower than in the ASD group without (30 ± 4 mm), P < 0.001. The technique was reproducible with inter-study bias ± 95% limits of agreement of 0.7 ± 2.7 mm. While RV-EF was lower in rTOF than in controls (49 ± 9% versus 57 ± 6%, P < 0.001), it did not differ between either ASD group and controls. CONCLUSIONS: Measurements of RV long axis displacement by CMR tagging showed more differences between the groups studied than did RV-EF, and was reproducible, quick and easy to apply. Further work is needed to assess its potential use for the detection of longitudinal changes in RV myocardial function.


Subject(s)
Heart Defects, Congenital/diagnosis , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Magnetic Resonance Imaging, Cine , Stroke Volume , Ventricular Dysfunction, Right/diagnosis , Ventricular Function, Right , Adult , Cardiac Surgical Procedures , Case-Control Studies , Female , Heart Defects, Congenital/pathology , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/surgery , Humans , Image Interpretation, Computer-Assisted , London , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Ventricular Dysfunction, Right/pathology , Ventricular Dysfunction, Right/physiopathology , Young Adult
16.
Proteomics ; 10(23): 4226-57, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21046614

ABSTRACT

Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2-DE technique of protein separation, and by first covering signal analysis for MS, we also explain the current image analysis workflow for the emerging high-throughput 'shotgun' proteomics platform of LC coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whereas existing commercial and academic packages and their workflows are described from both a user's and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot-centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image-based alignment and differential analysis in 2-DE, Bayesian peak mixture models, and functional mixed modelling in MS, and group-wise consensus alignment methods for LC/MS.


Subject(s)
Algorithms , Gene Expression , Image Processing, Computer-Assisted/methods , Proteome/analysis , Animals , Chromatography, Liquid , Data Interpretation, Statistical , Electrophoresis, Gel, Two-Dimensional , Humans , Mass Spectrometry , Signal Processing, Computer-Assisted
17.
Bioinformatics ; 24(7): 950-7, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18310057

ABSTRACT

MOTIVATION: The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. RESULTS: The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. AVAILABILITY: Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Image Interpretation, Computer-Assisted/methods , Peptide Mapping/methods , Proteome/chemistry , Proteomics/methods , Sequence Analysis, Protein/methods , Subtraction Technique , Algorithms , Amino Acid Sequence , Molecular Sequence Data , Pattern Recognition, Automated/methods , Systems Integration
18.
Commun Biol ; 2: 43, 2019.
Article in English | MEDLINE | ID: mdl-30729181

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million people worldwide with no effective treatment available. Development of AD follows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen the spatial scope of the study of AD and prioritise the study of human brains. Here we show that functionally distinct human brain regions display varying and region-specific changes in protein expression. These changes provide insights into the progression of disease, novel AD-related pathways, the presence of a gradient of protein expression change from less to more affected regions and a possibly protective protein expression profile in the cerebellum. This spatial proteomics analysis provides a framework which can underpin current research and open new avenues to enhance molecular understanding of AD pathophysiology, provide new targets for intervention and broaden the conceptual frameworks for future AD research.


Subject(s)
Alzheimer Disease/genetics , Cerebellum/metabolism , Gene Regulatory Networks , Nerve Tissue Proteins/genetics , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Autopsy , Case-Control Studies , Cerebellum/pathology , Disease Progression , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Female , Gene Expression Profiling , Gene Expression Regulation , Gyrus Cinguli/metabolism , Gyrus Cinguli/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Middle Aged , Motor Cortex/metabolism , Motor Cortex/pathology , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/metabolism , Organ Specificity , Signal Transduction , Somatosensory Cortex/metabolism , Somatosensory Cortex/pathology
19.
Mol Metab ; 28: 107-119, 2019 10.
Article in English | MEDLINE | ID: mdl-31451429

ABSTRACT

OBJECTIVE: The impact of diabetes mellitus on the central nervous system is less widely studied than in the peripheral nervous system, but there is increasing evidence that it elevates the risk of developing cognitive deficits. The aim of this study was to characterize the impact of experimental diabetes on the proteome and metabolome of the hippocampus. We tested the hypothesis that the vitamin B6 isoform pyridoxamine is protective against functional and molecular changes in diabetes. METHODS: We tested recognition memory using the novel object recognition (NOR) test in streptozotocin (STZ)-induced diabetic, age-matched control, and pyridoxamine- or insulin-treated diabetic male Wistar rats. Comprehensive untargeted metabolomic and proteomic analyses, using gas chromatography-mass spectrometry and iTRAQ-enabled protein quantitation respectively, were utilized to characterize the molecular changes in the hippocampus in diabetes. RESULTS: We demonstrated diabetes-specific, long-term (but not short-term) recognition memory impairment and that this deficit was prevented by insulin or pyridoxamine treatment. Metabolomic analysis showed diabetes-associated changes in 13/82 identified metabolites including polyol pathway intermediates glucose (9.2-fold), fructose (4.9-fold) and sorbitol (5.2-fold). We identified and quantified 4807 hippocampal proteins; 806 were significantly altered in diabetes. Pathway analysis revealed significant alterations in cytoskeletal components associated with synaptic plasticity, glutamatergic signaling, oxidative stress, DNA damage and FXR/RXR activation pathways in the diabetic rat hippocampus. CONCLUSIONS: Our data indicate a protective effect of pyridoxamine against diabetes-induced cognitive deficits, and our comprehensive 'omics datasets provide insight into the pathogenesis of cognitive dysfunction enabling development of further mechanistic and therapeutic studies.


Subject(s)
Cognitive Dysfunction/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Pyridoxamine/analogs & derivatives , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/administration & dosage , Male , Pyridoxamine/administration & dosage , Pyridoxamine/pharmacology , Rats , Rats, Wistar , Recognition, Psychology/drug effects , Streptozocin
20.
Med Image Anal ; 11(5): 478-91, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17804277

ABSTRACT

Understanding the morphology and function of heart valves is important to the study of underlying causes of heart failure. Existing techniques such as those based on echocardiography are limited by the relatively low signal-to-noise ratio (SNR), attenuation artefacts, and restricted access. The alternative of cardiovascular MR imaging offers versatility and accuracy in 3D localisation, but is hampered by large movements of the valves throughout the cardiac cycle. This paper presents a motion-compensated adaptive imaging approach for MR valve imaging. To illustrate its clinical potential, 3D motion of the aortic valve plane is first captured through a single breath-hold COMB tag pre-scan and then tracked in real-time with an automatic method based on multi-resolution image registration. Motion-compensated coverage of the aortic valve is then acquired prospectively, thus allowing its clear 3D reconstruction and visualisation. To provide isotropic voxel coverage of the imaging volume, retrospective projection onto convex sets (POCS) super-resolution enhancement is applied to the slice-select direction. In vivo results demonstrate the effectiveness of the proposed motion-compensation and super-resolution schemes for depicting the structure of the valve leaflets throughout the cardiac cycle. The proposed method fundamentally changes the way MR imaging is performed by transforming it from a spatially to materially localised imaging method. This also has important implications for quantifying blood flow and myocardial perfusion, as well as tracking anatomy and function of the heart.


Subject(s)
Algorithms , Artifacts , Heart Valves/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Movement , Artificial Intelligence , Diastole , Humans , Models, Statistical , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Systole
SELECTION OF CITATIONS
SEARCH DETAIL