ABSTRACT
Highly mobile predators can show strong numerical responses to pulsed resources, sometimes resulting in irruptions where large numbers of young invade landscapes at a continental scale. High production of young in irruption years may have a strong influence on the population dynamics unless immature survival is reduced compared to non-irruption years. This could occur if subordinate individuals (mainly immatures) are forced into suboptimal habitats due to density-dependent effects in irruption years. To test whether irruptive individuals had lower survival than non-irruptive ones, we combined necropsy results (N = 365) with telemetry (N = 185) from more than 20 years to record timing and causes of mortality in snowy owls (Bubo scandiacus), which irrupt into eastern North America during winter following high breeding output caused by lemming peaks in the Arctic. Mortality was more than four times higher in irruption years than non-irruption years, but only for immatures, and occurred disproportionately in early winter for immatures, but not adults. Mortality was also higher in eastern North America, where owl abundance fluctuates considerably between years, compared to core winter regions of the Arctic and Prairies where populations are more stable. Most mortality was not due to starvation, but rather associated with human activity, especially vehicle collisions. We conclude that immature snowy owls that irrupt into eastern North America are limited by density-dependent factors, such as increased competition forcing individuals to occupy risky human-altered habitats. For highly mobile, irruptive animals, resource pulses may have a limited impact on population dynamics due to low subsequent survival of breeding output during the nonbreeding season.
Subject(s)
Raptors , Strigiformes , Animals , Ecosystem , Population Dynamics , SeasonsABSTRACT
Accurate knowledge of geographic ranges and genetic relationships among populations is important when managing a species or population of conservation concern. Along the western coast of Canada, a subspecies of the northern goshawk (Accipiter gentilis laingi) is legally designated as Threatened. The range and distinctness of this form, in comparison with the broadly distributed North American subspecies (Accipiter gentilis atricapillus), is unclear. Given this morphological uncertainty, we analyzed genomic relationships in thousands of single nucleotide polymorphisms identified using genotyping-by-sequencing of high-quality genetic samples. Results revealed a genetically distinct population of northern goshawks on the archipelago of Haida Gwaii and subtle structuring among other North American sampling regions. We then developed genotyping assays for ten loci that are highly differentiated between the two main genetic clusters, allowing inclusion of hundreds of low-quality samples and confirming that the distinct genetic cluster is restricted to Haida Gwaii. As the laingi form was originally described as being based on Haida Gwaii (where the type specimen is from), further morphological analysis may result in this name being restricted to the Haida Gwaii genetic cluster. Regardless of taxonomic treatment, the distinct Haida Gwaii genetic cluster along with the small and declining population size of the Haida Gwaii population suggests a high risk of extinction of an ecologically and genetically distinct form of northern goshawk. Outside of Haida Gwaii, sampling regions along the coast of BC and southeast Alaska (often considered regions inhabited by laingi) show some subtle differentiation from other North American regions. These results will increase the effectiveness of conservation management of northern goshawks in northwestern North America. More broadly, other conservation-related studies of genetic variation may benefit from the two-step approach we employed that first surveys genomic variation using high-quality samples and then genotypes low-quality samples at particularly informative loci.