Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PLoS Pathog ; 18(7): e1010618, 2022 07.
Article in English | MEDLINE | ID: mdl-35789343

ABSTRACT

The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies.


Subject(s)
COVID-19 , Aerosols , Animals , Chlorocebus aethiops , Disease Models, Animal , Humans , Lung/pathology , Macaca mulatta , SARS-CoV-2
2.
PLoS Pathog ; 18(6): e1010507, 2022 06.
Article in English | MEDLINE | ID: mdl-35714165

ABSTRACT

The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Endocytosis , Gene Products, env/genetics , Macaca mulatta/metabolism , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/metabolism
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33563754

ABSTRACT

COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine.


Subject(s)
COVID-19/physiopathology , COVID-19/transmission , Exhalation/physiology , Obesity/physiopathology , Aerosols , Age Factors , Animals , Body Mass Index , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Humans , Mucus/chemistry , Mucus/virology , Obesity/epidemiology , Obesity/virology , Particle Size , Primates , Respiratory System/metabolism , SARS-CoV-2/isolation & purification , Viral Load
4.
PLoS Pathog ; 17(12): e1010162, 2021 12.
Article in English | MEDLINE | ID: mdl-34929014

ABSTRACT

The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.


Subject(s)
COVID-19 , Disease Models, Animal , Macaca nemestrina , Monkey Diseases/virology , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Immunity, Humoral , Lung/immunology , Lung/virology , Male , Monkey Diseases/immunology , Monkey Diseases/pathology , Monkey Diseases/physiopathology , T-Lymphocytes/immunology
5.
J Infect Dis ; 226(9): 1588-1592, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35429402

ABSTRACT

Breakthrough gastrointestinal COVID-19 was observed after experimental SARS-CoV-2 upper mucosal infection in a rhesus macaque undergoing low-dose monoclonal antibody prophylaxis. High levels of viral RNA were detected in intestinal sites contrasting with minimal viral replication in upper respiratory mucosa. Sequencing of virus recovered from tissue in 3 gastrointestinal sites and rectal swab revealed loss of furin cleavage site deletions present in the inoculating virus stock and 2 amino acid changes in spike that were detected in 2 colon sites but not elsewhere, suggesting compartmentalized replication and intestinal viral evolution. This suggests suboptimal antiviral therapies promote viral sequestration in these anatomies.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Macaca mulatta
6.
Am J Pathol ; 191(2): 274-282, 2021 02.
Article in English | MEDLINE | ID: mdl-33171111

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a wide range of disease severity, ranging from asymptomatic infection to a life-threating illness, particularly in the elderly population and individuals with comorbid conditions. Among individuals with serious coronavirus 2019 (COVID-19) disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of COVID-19-induced ARDS and evaluate therapeutic strategies. We report two cases of ARDS in two aged African green monkeys (AGMs) infected with SARS-CoV-2 that had pathological lesions and disease similar to severe COVID-19 in humans. We also report a comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic, and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques (RMs) infected with SARS-CoV-2. Notable increases in circulating cytokines were observed in three of four infected, aged AGMs but not in infected RMs. All the AGMs had increased levels of plasma IL-6 compared with baseline, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2. Together, our results indicate that both RMs and AGMs are capable of modeling SARS-CoV-2 infection and suggest that aged AGMs may be useful for modeling severe disease manifestations, including ARDS.


Subject(s)
COVID-19/etiology , Lung/virology , SARS-CoV-2/pathogenicity , Aging , Animals , Chlorocebus aethiops/virology , Coronavirus Infections/drug therapy , Cytokines/metabolism , Humans , Lung/pathology , Macaca mulatta/virology , Viral Load/methods
7.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Article in English | MEDLINE | ID: mdl-32991819

ABSTRACT

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Subject(s)
Alveolar Epithelial Cells/immunology , COVID-19/immunology , Gene Expression , SARS-CoV-2/immunology , Signal Transduction/immunology , Adenoviridae/genetics , Adenoviridae/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Signal Transduction/genetics , Transduction, Genetic
8.
Proc Natl Acad Sci U S A ; 115(1): E62-E71, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255022

ABSTRACT

Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Lung/immunology , Mycobacterium tuberculosis/immunology , Tryptophan/immunology , Tuberculoma/immunology , Tuberculosis, Pulmonary/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Granuloma/immunology , Granuloma/pathology , Lung/pathology , Macaca mulatta , Macrophages/immunology , Macrophages/pathology , Mycobacterium tuberculosis/pathogenicity , Tuberculoma/pathology , Tuberculosis, Pulmonary/pathology
9.
J Immunol ; 201(7): 1994-2003, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30104244

ABSTRACT

Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , HIV Infections/immunology , HIV/immunology , Lymph Nodes/immunology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Animals, Newborn , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Humans , Immunity, Humoral , Immunologic Memory , Lymphocyte Activation , Paracrine Communication , Viremia
10.
Proc Natl Acad Sci U S A ; 113(38): E5636-44, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601645

ABSTRACT

The synergy between Mycobacterium tuberculosis (Mtb) and HIV in coinfected patients has profoundly impacted global mortality because of tuberculosis (TB) and AIDS. HIV significantly increases rates of reactivation of latent TB infection (LTBI) to active disease, with the decline in CD4(+) T cells believed to be the major causality. In this study, nonhuman primates were coinfected with Mtb and simian immunodeficiency virus (SIV), recapitulating human coinfection. A majority of animals exhibited rapid reactivation of Mtb replication, progressing to disseminated TB and increased SIV-associated pathology. Although a severe loss of pulmonary CD4(+) T cells was observed in all coinfected macaques, a subpopulation of the animals was still able to prevent reactivation and maintain LTBI. Investigation of pulmonary immune responses and pathology in this cohort demonstrated that increased CD8(+) memory T-cell proliferation, higher granzyme B production, and expanded B-cell follicles correlated with protection from reactivation. Our findings reveal mechanisms that control SIV- and TB-associated pathology. These CD4-independent protective immune responses warrant further studies in HIV coinfected humans able to control their TB infection. Moreover, these findings will provide insight into natural immunity to Mtb and will guide development of novel vaccine strategies and immunotherapies.


Subject(s)
HIV Infections/immunology , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Simian Immunodeficiency Virus/pathogenicity , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Cell Proliferation/genetics , Coinfection/virology , HIV/immunology , HIV/pathogenicity , HIV Infections/physiopathology , HIV Infections/virology , Humans , Immunologic Memory/genetics , Latent Tuberculosis/microbiology , Latent Tuberculosis/pathology , Latent Tuberculosis/virology , Lymphocyte Activation/immunology , Macaca mulatta/immunology , Macaca mulatta/microbiology , Macaca mulatta/virology , Mycobacterium tuberculosis/immunology , Simian Immunodeficiency Virus/immunology
11.
Am J Pathol ; 187(12): 2811-2820, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28935575

ABSTRACT

Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.


Subject(s)
Simian Acquired Immunodeficiency Syndrome/complications , Tuberculosis Vaccines/pharmacology , Tuberculosis/prevention & control , Virus Activation/drug effects , Administration, Inhalation , Animals , Coinfection , HIV , Macaca mulatta , Mycobacterium tuberculosis , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/physiology , Tuberculosis/complications , Vaccines, Attenuated/pharmacology
12.
J Med Primatol ; 47(1): 35-39, 2018 02.
Article in English | MEDLINE | ID: mdl-28585307

ABSTRACT

BACKGROUND: Our previous study suggested newborns have competent immune systems with the potential to respond to foreign antigens and vaccines. In this study, we examined infant immune responses to tetanus toxoid (TT) vaccination in the presence of maternal antibody to TT. METHODS: We examined changes in plasma levels of tetanus toxoid-specific IgG1 (anti-TT IgG1) in a total of eight infant rhesus macaques from birth through 6 months of age using a commercial Monkey Anti-TT IgG1 ELISA kit. RESULTS: A significant correlation between anti-TT IgG1 levels in vaccinated dams and their paired newborn infants was detected in control (non-vaccinated) infants as previously reported. Maternal anti-TT IgG1 levels declined rapidly within 1 month of birth in non-vaccinated infants (n=4). In four infants vaccinated with TT at birth, we found two had rapid and robust antibody responses to vaccination. Interestingly, the other two first showed declining TT antibody levels for 2 weeks followed by increasing levels without additional vaccine boosts, indicating all four had good antibody responses to primary TT vaccination at birth, despite the presence of high levels of maternal antibodies to TT in all four infants. CONCLUSIONS: Our data indicate that newborn macaques have competent immune systems that are capable of generating their own primary antibody responses to vaccination, at least to tetanus antigens. Maternal antibodies thus do not significantly impair antibody response to the vaccination, even when received on the day of birth in infant rhesus macaques.


Subject(s)
Antibodies, Bacterial/immunology , Bordetella pertussis/immunology , Immunity, Maternally-Acquired/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Tetanus Toxoid/immunology , Animals , Antibodies, Bacterial/blood , Autoantigens/blood , Autoantigens/immunology , Female , Immunoglobulin G/blood , Vaccination
13.
J Virol ; 89(19): 9817-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26178993

ABSTRACT

UNLABELLED: Like varicella-zoster virus (VZV), simian varicella virus (SVV) reactivates to produce zoster. In the present study, 5 rhesus macaques were inoculated intrabronchially with SVV, and 5 months later, 4 monkeys were immunosuppressed; 1 monkey was not immunosuppressed but was subjected to the stress of transportation. In 4 monkeys, a zoster rash developed 7 to 12 weeks after immunosuppression, and a rash also developed in the monkey that was not immunosuppressed. Analysis at 24 to 48 h after zoster revealed SVV antigen in the lung alveolar wall, in ganglionic neurons and nonneuronal cells, and in skin and in lymph nodes. In skin, SVV was found primarily in sweat glands. In lymph nodes, the SVV antigen colocalized mostly with macrophages, dendritic cells, and, to a lesser extent, T cells. The presence of SVV in lymph nodes, as verified by quantitative PCR detection of SVV DNA, might reflect the sequestration of virus by macrophages and dendritic cells in lymph nodes or the presentation of viral antigens to T cells to initiate an immune response against SVV, or both. IMPORTANCE: VZV causes varicella (chickenpox), becomes latent in ganglia, and reactivates to produce zoster and multiple other serious neurological disorders. SVV in nonhuman primates has proved to be a useful model in which the pathogenesis of the virus parallels the pathogenesis of VZV in humans. Here, we show that SVV antigens are present in sweat glands in skin and in macrophages and dendritic cells in lymph nodes after SVV reactivation in monkeys, raising the possibility that macrophages and dendritic cells in lymph nodes serve as antigen-presenting cells to activate T cell responses against SVV after reactivation.


Subject(s)
Herpes Zoster/pathology , Herpes Zoster/virology , Lymph Nodes/virology , Varicellovirus/physiology , Virus Activation/physiology , Animals , Chlorocebus aethiops , DNA, Viral/analysis , Dendritic Cells/virology , Fluorescent Antibody Technique , Immunohistochemistry , Immunosuppression Therapy , Lymph Nodes/cytology , Macaca mulatta , Macrophages/virology , Real-Time Polymerase Chain Reaction , Skin/pathology , Skin/virology , T-Lymphocytes/virology , Vero Cells
14.
Am J Pathol ; 185(5): 1344-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25892509

ABSTRACT

Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, affects both peripheral and central nervous systems. We assessed a causal role for inflammation in Lyme neuroborreliosis pathogenesis by evaluating the induced inflammatory changes in the central nervous system, spinal nerves, and dorsal root ganglia (DRG) of rhesus macaques that were inoculated intrathecally with live B. burgdorferi and either treated with dexamethasone or meloxicam (anti-inflammatory drugs) or left untreated. ELISA of cerebrospinal fluid showed significantly elevated levels of IL-6, IL-8, chemokine ligand 2, and CXCL13 and pleocytosis in all infected animals, except dexamethasone-treated animals. Cerebrospinal fluid and central nervous system tissues of infected animals were culture positive for B. burgdorferi regardless of treatment. B. burgdorferi antigen was detected in the DRG and dorsal roots by immunofluorescence staining and confocal microscopy. Histopathology revealed leptomeningitis, vasculitis, and focal inflammation in the central nervous system; necrotizing focal myelitis in the cervical spinal cord; radiculitis; neuritis and demyelination in the spinal roots; and inflammation with neurodegeneration in the DRG that was concomitant with significant neuronal and satellite glial cell apoptosis. These changes were absent in the dexamethasone-treated animals. Electromyography revealed persistent abnormalities in F-wave chronodispersion in nerve roots of a few infected animals; which were absent in dexamethasone-treated animals. These results suggest that inflammation has a causal role in the pathogenesis of acute Lyme neuroborreliosis.


Subject(s)
Inflammation/pathology , Lyme Neuroborreliosis/pathology , Animals , Borrelia burgdorferi , Cytokines/analysis , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Inflammation/immunology , Lyme Neuroborreliosis/immunology , Macaca mulatta , Male , Microscopy, Confocal
15.
J Virol ; 87(21): 11604-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23966410

ABSTRACT

Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.


Subject(s)
Antibodies, Neutralizing/administration & dosage , HIV Antibodies/administration & dosage , HIV-1/immunology , Immunoglobulin G/administration & dosage , Sexually Transmitted Diseases/prevention & control , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Dose-Response Relationship, Drug , Female , HIV Antibodies/immunology , HIV-1/genetics , Humans , Immunoglobulin G/immunology , Macaca mulatta , Simian Immunodeficiency Virus/genetics , Treatment Outcome
16.
J Neurovirol ; 20(5): 526-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25139181

ABSTRACT

Simian varicella virus (SVV) infection of non-human primates models human varicella zoster virus (VZV) infection. Assessment of cell signaling immune responses in monkeys after primary SVV infection, after immunosuppression and during reactivation revealed strong pro-inflammatory responses and lesser anti-inflammatory components during varicella and reactivation. Pro-inflammatory mediators elevated during varicella included interferon-gamma (IFN-γ), interleukin (IL)-6, monocyte chemoattractant protein (MCP-1), interferon inducible T-cell α chemoattractant protein (I-TAC), interferon processing protein (IP-10), and anti-inflammatory interleukin-1 Receptor antagonist (IL-1Ra). After immunosuppression and at reactivation, levels of pro-inflammatory mediators MCP-1, eotaxin, IL-6, IL-8, MIF, RANTES (regulated-on-activation normal T-cell expressed and secreted), and HGF (hepatocyte growth factor) were elevated, as was the anti-inflammatory mediator IL-1Ra. Characterization of cytokine, chemokine and growth factor responses during different stages of varicella virus infection will facilitate immunotherapeutic and vaccine strategies.


Subject(s)
Herpesviridae Infections/immunology , Virus Activation/immunology , Virus Latency/immunology , Animals , Chemokines/immunology , Disease Models, Animal , Inflammation/immunology , Inflammation/virology , Macaca mulatta , Male , Varicellovirus/physiology
17.
Front Immunol ; 14: 1085883, 2023.
Article in English | MEDLINE | ID: mdl-36845143

ABSTRACT

Introduction: ARS-CoV-2 is a respiratory pathogen currently causing a worldwide pandemic, with resulting pathology of differing severity in humans, from mild illness to severe disease and death. The rhesus macaque model of COVID-19 was utilized to evaluate the added benefit of prophylactic administration of human post-SARS-CoV-2 infection convalescent plasma (CP) on disease progression and severity. Methods: A pharmacokinetic (PK) study using CP in rhesus monkeys preceded the challenge study and revealed the optimal time of tissue distribution for maximal effect. Thereafter, CP was administered prophylactically three days prior to mucosal SARS-CoV-2 viral challenge. Results: Results show similar viral kinetics in mucosal sites over the course of infection independent of administration of CP or normal plasma, or historic controls with no plasma. No changes were noted upon necropsy via histopathology, although there were differences in levels of vRNA in tissues, with both normal and CP seemingly blunting viral loads. Discussion: Results indicate that prophylactic administration with mid-titer CP is not effective in reducing disease severity of SARS-CoV-2 infection in the rhesus COVID-19 disease model.


Subject(s)
COVID-19 , Animals , Humans , Macaca mulatta , SARS-CoV-2 , Immunization, Passive/methods , COVID-19 Serotherapy
18.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014096

ABSTRACT

Persistent and uncontrolled SARS-CoV-2 replication in immunocompromised individuals has been observed and may be a contributing source of novel viral variants that continue to drive the pandemic. Importantly, the effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. Here we conducted a pilot study wherein two pigtail macaques (PTM) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and monitored for six weeks for clinical disease, viral replication, and viral evolution, and compared to our previously published cohort of SIV-naïve PTM infected with SARS-CoV-2. At the time of SARS-CoV-2 infection, one PTM had minimal to no detectable CD4+ T cells in gut, blood, or bronchoalveolar lavage (BAL), while the other PTM harbored a small population of CD4+ T cells in all compartments. Clinical signs were not observed in either PTM; however, the more immunocompromised PTM exhibited a progressive increase in pulmonary infiltrating monocytes throughout SARS-CoV-2 infection. Single-cell RNA sequencing (scRNAseq) of the infiltrating monocytes revealed a less activated/inert phenotype. Neither SIV-infected PTM mounted detectable anti-SARS-CoV-2 T cell responses in blood or BAL, nor anti-SARS-CoV-2 neutralizing antibodies. Interestingly, despite the diminished cellular and humoral immune responses, SARS-CoV-2 viral kinetics and evolution were indistinguishable from SIV-naïve PTM in all sampled mucosal sites (nasal, oral, and rectal), with clearance of virus by 3-4 weeks post infection. SIV-induced immunodeficiency significantly impacted immune responses to SARS-CoV-2 but did not alter disease progression, viral kinetics or evolution in the PTM model. SIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants.

19.
Pathogens ; 11(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35631051

ABSTRACT

Uptake of the Lyme disease spirochete by its tick vector requires not only chemical signals present in the tick's saliva but a responsive phenotype by the Borrelia burgdorferi living in the mammalian host. This is the principle behind xenodiagnosis, wherein pathogen is detected by vector acquisition. To study migration of B. burgdorferi toward Ixodes scapularis tick saliva, with the goal of identifying chemoattractant molecules, we tested multiple assays and compared migration of host-adapted spirochetes to those cultured in vitro. We tested mammalian host-adapted spirochetes, along with those grown in culture at 34 °C, for their relative attraction to tick saliva or the nutrient N-acetyl-D-glucosamine (D-GlcNAc) and its dimer chitobiose using two different experimental designs. The host-adapted B. burgdorferi showed greater preference for tick saliva over the nutrients, whereas the cultured incubator-grown B. burgdorferi displayed no significant attraction to saliva versus a significant response to the nutrients. Our results not only describe a validated migration assay for studies of the Lyme disease agent, but provide a further understanding of how growth conditions and phenotype of B. burgdorferi are related to vector acquisition.

20.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: mdl-35062343

ABSTRACT

The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.


Subject(s)
Antiretroviral Therapy, Highly Active , Macaca mulatta/virology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus , Transcriptome , Animals , Brain , Central Nervous System , Chemokines/metabolism , China , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Gene Expression Profiling , HIV , HIV Infections/blood , HIV Infections/genetics , HIV Infections/metabolism , Influenza A virus , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL