ABSTRACT
PURPOSE: Signal voids caused by metallic needles pose visualization and monitoring challenges in many MRI applications. In this work, we explore a solution to this problem in the form of an active shim insert that fits inside a needle and corrects the field disturbance (ΔB0 ) caused by the needle outside of it. METHODS: The ΔB0 induced by a 4 mm outside-diameter titanium needle at 3T is modeled and a two-coil orthogonal shim set is designed and fabricated to shim the ΔB0 . Signal recovery around the needle is assessed in multiple orientations in a water phantom with four different pulse sequences. Phase stability around the needle is assessed in an ex-vivo porcine tissue dynamic gradient echo experiment with and without shimming. Additionally, heating of the shim insert is assessed under 8 min of continuous operation with 1A current and concurrent imaging. RESULTS: An average recovery of ~63% of lost signal around the needle across orientations is shown with active shimming with a maximum current of 1.172 A. Signal recovery and correction of the underlying ΔB0 is shown to be independent of imaging sequence. Needle-induced phase gradients outside the perceptible signal void are also minimized with active shimming. Temperature rise of up to 0.9° Celsius is noted over 8 min of continuous 1A active shimming operation. CONCLUSION: A sequence independent method for minimization of metallic needle induced signal loss using an active shim insert is presented. The method has potential benefits in a range of qualitative and quantitative interventional MRI applications.
Subject(s)
Artifacts , Needles , Animals , Brain , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , SwineABSTRACT
Birdcage coils are widely used in preclinical MRI as they perform well, allow for quadrature drive, and can provide a homogeneous transmit field. Unlike in larger bore scanners, an RF shield is essential to avoid strong cross-talk with gradient coils that are in close proximity. However, gradient switching induces eddy currents that heat the shield and coil and impair the temporal signal-to-noise ratio (tSNR). The motivation of this study is to investigate the performance of different designs of RF shields on a birdcage coil used for high resolution functional MRI of small primates at 9.4 T. We found the choice of materials for RF shields significantly affected ghosting and tSNR in fMRI scans. Both ultrathin foils and a slotted pattern reduce eddy currents and improve imaging quality. Our results also demonstrate that a 9-um-thick copper foil is sufficiently thin to reduce the eddy current effects for high-resolution fMRI scans and there is no need for high-cost 4-um-thick foil. For slotted shields, our results demonstrate that the number of slots should be carefully considered, and an excessive number of slots can lead to a lower SNR and tSNR. We believe the results from this study can be used as a reference to design future RF coil shields selection for preclinical scanners.
Subject(s)
Copper , Magnetic Resonance Imaging , Animals , Magnetic Resonance Imaging/methods , Radio Waves , Signal-To-Noise Ratio , Phantoms, Imaging , Equipment DesignABSTRACT
A quadrature transmit/receive birdcage coil was optimized for squirrel monkey functional imaging at the high field of 9.4 T. The coil length was chosen to gain maximum coil efficiency/signal-to-noise ratio (SNR) and meanwhile provide enough homogenous RF field in the whole brain area. Based on the numerical simulation results, a 16-rung high-pass birdcage coil with the optimal length of 9 cm was constructed and evaluated on phantom and in vivo experiments. Compared to a general-purpose non-optimized coil, it exhibits approximately 25% in vivo SNR improvement. In addition to the volume coil, details about how to design and construct the associated animal preparation system were provided.
Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Equipment Design , Phantoms, Imaging , SaimiriABSTRACT
Rodent models of spinal cord injury (SCI) have been widely used in pre-clinical studies. Injuries may occur at different levels of the lumbar and thoracic cord, and the number of segments injured and their depths may vary along the spine. It is thereby challenging to build one universal RF coil that exhibits optimal performance for all spinal cord imaging applications, especially in an animal scanner with small in-bore space and limited hardware configurations. We developed an interchangeable RF coil system for a 9.4 T small animal MRI scanner, in which the users can select an optimal coil specialized for imaging specific parts of a rat spine. We also developed the associated animal management device for immobilization and positioning. The whole system allows ease of RF coil exchange, animal fixation, and positioning, and thus reduces the animal preparation time before the MRI scan significantly. Compared to a commercial general-purpose 2-cm-diameter coil that was used in our previous studies, the specialized coil optimized for Sprague-Dawley rat lumbar spinal cord imaging exhibits up to 2.4 times SNR improvement.