Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2320898121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833464

ABSTRACT

The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.


Subject(s)
Anopheles , Bayes Theorem , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Seroepidemiologic Studies , Insect Bites and Stings/epidemiology , Insect Bites and Stings/immunology , Insect Bites and Stings/parasitology , Sporozoites/immunology
2.
Proc Natl Acad Sci U S A ; 120(1): e2215003120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577076

ABSTRACT

We used a transgenic parasite in which Plasmodium falciparum parasites were genetically modified to express Plasmodium vivax apical membrane antigen 1 (PvAMA1) protein in place of PfAMA1 to study PvAMA1-mediated invasion. In P. falciparum, AMA1 interaction with rhoptry neck protein 2 (RON2) is known to be crucial for invasion, and PfRON2 peptides (PfRON2p) blocked the invasion of PfAMA1 wild-type parasites. However, PfRON2p has no effect on the invasion of transgenic parasites expressing PvAMA1 indicating that PfRON2 had no role in the invasion of PvAMA1 transgenic parasites. Interestingly, PvRON2p blocked the invasion of PvAMA1 transgenic parasites in a dose-dependent manner. We found that recombinant PvAMA1 domains 1 and 2 (rPvAMA1) bound to reticulocytes and normocytes indicating that PvAMA1 directly interacts with erythrocytes during the invasion, and invasion blocking of PvRON2p may result from it interfering with PvAMA1 binding to erythrocytes. It was previously shown that the peptide containing Loop1a of PvAMA1 (PvAMA1 Loop1a) is also bound to reticulocytes. We found that the Loop1a peptide blocked the binding of PvAMA1 to erythrocytes. PvAMA1 Loop1a has no polymorphisms in contrast to other PvAMA1 loops and may be an attractive vaccine target. We thus present the evidence that PvAMA1 binds to erythrocytes in addition to interacting with PvRON2 suggesting that the P. vivax merozoites may exploit complex pathways during the invasion process.


Subject(s)
Malaria, Falciparum , Plasmodium vivax , Humans , Protozoan Proteins/chemistry , Antigens, Protozoan , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Reticulocytes/metabolism
3.
Cell Mol Life Sci ; 80(3): 74, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847896

ABSTRACT

Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a ß-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.


Subject(s)
Erythrocytes , Malaria , Membrane Proteins , Protozoan Proteins , Humans , Cell Membrane/metabolism , Erythrocytes/metabolism , Erythrocytes/parasitology , Malaria/genetics , Malaria/metabolism , Malaria/parasitology , Malaria/prevention & control , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33893175

ABSTRACT

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2/immunology , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , COVID-19/immunology , Camelids, New World , Humans , Mice , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology
5.
J Infect Dis ; 224(7): 1128-1138, 2021 10 13.
Article in English | MEDLINE | ID: mdl-32236404

ABSTRACT

BACKGROUND: RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. METHODS: We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. RESULTS: Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. CONCLUSIONS: Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. CLINICAL TRIALS REGISTRATION: NCT00075049.


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/administration & dosage , Malaria/prevention & control , Vaccine Efficacy , Antigens, Protozoan , Humans , Malaria/blood , Malaria Vaccines/immunology , Protozoan Proteins
6.
BMC Med ; 19(1): 121, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34044836

ABSTRACT

BACKGROUND: In the Greater Mekong Subregion (GMS), current malaria surveillance strategies rely on a network of village health volunteers (VHVs) reporting the results of rapid diagnostic tests (RDTs), known to miss many asymptomatic infections. Integration of more sensitive diagnostic molecular and serological measures into the VHV network may improve surveillance of residual malaria transmission in hard-to-reach areas in the region and inform targeted interventions and elimination responses. However, data on residual malaria transmission that would be captured by these measures in the VHV-led testing and treatment surveillance network in the GMS is unknown. METHODS: A total of 114 VHVs were trained to collect dried blood spots from villagers undergoing routine RDTs as part of VHV-led active and passive case detection from April 2015 to June 2016. Samples were subjected to molecular testing (quantitative polymerase chain reaction [qPCR]) to determine Plasmodium falciparum and P. vivax infection and serological testing (against P. falciparum and P. vivax antigens) to determine exposure to P. falciparum and P. vivax. RESULTS: Over 15 months, 114 VHVs performed 32,194 RDTs and collected samples for molecular (n = 13,157) and serological (n = 14,128) testing. The prevalence of molecular-detectable P. falciparum and P. vivax infection was 3.2% compared to the 0.16% prevalence of Plasmodium spp. by RDT, highlighting the large burden of infections undetected by standard surveillance. Peaks in anti-P. falciparum, but not P. vivax, merozoite IgG seroprevalence coincided with seasonal P. falciparum transmission peaks, even in those with no molecularly detectable parasites. At the individual level, antibody seropositivity was associated with reduced odds of contemporaneous P. falciparum (OR for PfCSP 0.51 [95%CI 0.35, 0.76], p = 0.001, PfAMA1 0.70 [95%CI 0.52, 0.93], p = 0.01, and PfMSP2 0.81 [95%CI 0.61, 1.08], p = 0.15), but not P. vivax infection (OR PvAMA1 1.02 [95%CI 0.73, 1.43], p = 0.89) indicating a potential role of immunity in protection against molecular-detectable P. falciparum parasitaemia. CONCLUSIONS: We demonstrated that integration and implementation of sample collection for molecular and serological surveillance into networks of VHV servicing hard-to-reach populations in the GMS is feasible, can capture significant levels of ongoing undetected seasonal malaria transmission and has the potential to supplement current routine RDT testing. Improving malaria surveillance by advancing the integration of molecular and serological techniques, through centralised testing approaches or novel point-of-contact tests, will advance progress, and tracking, towards malaria elimination goals in the GMS.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Cross-Sectional Studies , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Prevalence , Seroepidemiologic Studies
7.
BMC Med ; 17(1): 45, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30798787

ABSTRACT

BACKGROUND: Leading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibody-complement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,S vaccine-induced antibodies could function by interacting with complement. METHODS: Serum samples were selected from children in a phase IIb trial of RTS,S/AS02A conducted at two study sites of high and low malaria transmission intensity in Manhiça, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination. RESULTS: RTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and C-terminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3. CONCLUSIONS: We demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and long-lasting malaria vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria/prevention & control , Child, Preschool , Humans
8.
J Infect Dis ; 217(3): 498-507, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29165651

ABSTRACT

Plasmodium vivax and P. falciparum malaria species have diverged significantly in receptor-ligand interactions and host-cell invasion. One protein common to both is the merozoite invasion ligand AMA1. While the general structure of AMA1 is similar between species, their sequences are divergent. Surprisingly, it was possible to genetically replace PfAMA1 with PvAMA1 in P. falciparum parasites. PvAMA1 complemented PfAMA1 function and supported invasion of erythrocytes by P. falciparum. Genetically modified P. falciparum expressing PvAMA1 evaded the invasion inhibitory effects of antibodies to PfAMA1, demonstrating species specificity of functional antibodies. We generated antibodies to recombinant PvAMA1 that effectively inhibited invasion, confirming the function of PvAMA1 in genetically modified parasites. Results indicate significant molecular flexibility in AMA1 enabling conserved function despite substantial sequence divergence across species. This provides powerful new tools to quantify the inhibitory activities of antibodies or drugs targeting PvAMA1, opening new opportunities for vaccine and therapeutic development against P. vivax.


Subject(s)
Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Malaria Vaccines/isolation & purification , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Plasmodium vivax/genetics , Plasmodium vivax/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Animals , Antigens, Protozoan/immunology , Drug Discovery/methods , Endocytosis , Erythrocytes/parasitology , Genetic Complementation Test , Genetic Variation , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Rabbits
9.
BMC Med ; 14(1): 144, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658419

ABSTRACT

BACKGROUND: The polymorphic nature of many malaria vaccine candidates presents major challenges to achieving highly efficacious vaccines. Presently, there is very little knowledge on the prevalence and patterns of functional immune responses to polymorphic vaccine candidates in populations to guide vaccine design. A leading polymorphic vaccine candidate against blood-stage Plasmodium falciparum is apical membrane antigen 1 (AMA1), which is essential for erythrocyte invasion. The importance of AMA1 as a target of acquired human inhibitory antibodies, their allele specificity and prevalence in populations is unknown, but crucial for vaccine design. METHODS: P. falciparum lines expressing different AMA1 alleles were genetically engineered and used to quantify functional antibodies from two malaria-exposed populations of adults and children. The acquisition of AMA1 antibodies was also detected using enzyme-linked immunosorbent assay (ELISA) and competition ELISA (using different AMA1 alleles) from the same populations. RESULTS: We found that AMA1 was a major target of naturally acquired invasion-inhibitory antibodies that were highly prevalent in malaria-endemic populations and showed a high degree of allele specificity. Significantly, the prevalence of inhibitory antibodies to different alleles varied substantially within populations and between geographic locations. Inhibitory antibodies to three specific alleles were highly prevalent (FVO and W2mef in Papua New Guinea; FVO and XIE in Kenya), identifying them for potential vaccine inclusion. Measurement of antibodies by standard or competition ELISA was not strongly predictive of allele-specific inhibitory antibodies. The patterns of allele-specific functional antibody responses detected with our novel assays may indicate that acquired immunity is elicited towards serotypes that are prevalent in each geographic location. CONCLUSIONS: These findings provide new insights into the nature and acquisition of functional immunity to a polymorphic vaccine candidate and strategies to quantify functional immunity in populations to guide rational vaccine design.

10.
PLoS Pathog ; 9(12): e1003840, 2013.
Article in English | MEDLINE | ID: mdl-24385910

ABSTRACT

Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes.


Subject(s)
Antigenic Variation , Antigens, Protozoan/immunology , Epitopes/immunology , Malaria Vaccines , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antigenic Variation/genetics , Antigenic Variation/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Cells, Cultured , Conserved Sequence/immunology , Epitope Mapping , Epitopes/genetics , Immunity, Humoral , Malaria Vaccines/chemistry , Malaria Vaccines/immunology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Nude , Models, Molecular , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Rabbits , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology
11.
Infect Immun ; 82(11): 4707-17, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25156737

ABSTRACT

Apical membrane antigen 1 (AMA1) is a leading malarial vaccine candidate; however, its polymorphic nature may limit its success in the field. This study aimed to circumvent AMA1 diversity by dampening the antibody response to the highly polymorphic loop Id, previously identified as a major target of strain-specific, invasion-inhibitory antibodies. To achieve this, five polymorphic residues within this loop were mutated to alanine, glycine, or serine in AMA1 of the 3D7 and FVO Plasmodium falciparum strains. Initially, the corresponding antigens were displayed on the surface of bacteriophage, where the alanine and serine but not glycine mutants folded correctly. The alanine and serine AMA1 mutants were expressed in Escherichia coli, refolded in vitro, and used to immunize rabbits. Serological analyses indicated that immunization with a single mutated form of 3D7 AMA1 was sufficient to increase the cross-reactive antibody response. Targeting the corresponding residues in an FVO backbone did not achieve this outcome. The inclusion of at least one engineered form of AMA1 in a biallelic formulation resulted in an antibody response with broader reactivity against different AMA1 alleles than combining the wild-type forms of 3D7 and FVO AMA1 alleles. For one combination, this extended to an enhanced relative growth inhibition of a heterologous parasite line, although this was at the cost of reduced overall inhibitory activity. These results suggest that targeted mutagenesis of AMA1 is a promising strategy for overcoming antigenic diversity in AMA1 and reducing the number of variants required to induce an antibody response that protects against a broad range of Plasmodium falciparum AMA1 genotypes. However, optimization of the immunization regime and mutation strategy will be required for this potential to be realized.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria/prevention & control , Membrane Proteins/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal , Antibodies, Protozoan , Antigenic Variation/immunology , Genetic Variation , Malaria/parasitology , Models, Molecular , Mutagenesis , Mutation , Protein Conformation , Rabbits , Recombinant Proteins , Species Specificity
12.
BMC Med ; 12: 183, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25319190

ABSTRACT

BACKGROUND: Polymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies. METHODS: We aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence. RESULTS: We found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis. CONCLUSIONS: Antigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Alleles , Antibodies, Protozoan/immunology , Antigenic Variation , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Humans , Kenya , Malaria Vaccines/genetics , Middle Aged , Papua New Guinea , Plasmodium falciparum/genetics , Polymorphism, Genetic
13.
Nature ; 453(7195): 609-14, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18509435

ABSTRACT

Malaria parasites and related Apicomplexans are the causative agents of the some of the most serious infectious diseases of humans, companion animals, livestock and wildlife. These parasites must undergo sexual reproduction to transmit from vertebrate hosts to vectors, and their sex ratios are consistently female-biased. Sex allocation theory, a cornerstone of evolutionary biology, is remarkably successful at explaining female-biased sex ratios in multicellular taxa, but has proved controversial when applied to malaria parasites. Here we show that, as predicted by theory, sex ratio is an important fitness-determining trait and Plasmodium chabaudi parasites adjust their sex allocation in response to the presence of unrelated conspecifics. This suggests that P. chabaudi parasites use kin discrimination to evaluate the genetic diversity of their infections, and they adjust their behaviour in response to environmental cues. Malaria parasites provide a novel way to test evolutionary theory, and support the generality and power of a darwinian approach.


Subject(s)
Biological Evolution , Malaria/parasitology , Plasmodium chabaudi/physiology , Sex Ratio , Animals , Cues , Female , Fertility/genetics , Fertility/physiology , Genetic Variation , Genotype , Humans , Male , Models, Biological , Plasmodium chabaudi/genetics
14.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315523

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Stem Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Lung
15.
Front Cell Infect Microbiol ; 12: 804470, 2022.
Article in English | MEDLINE | ID: mdl-35463638

ABSTRACT

Introduction: Understanding the human immune response to Plasmodium falciparum gametocytes and its association with gametocytemia is essential for understanding the transmission of malaria as well as progressing transmission blocking vaccine candidates. Methods: In a multi-national clinical efficacy trial of artemisinin therapies (13 sites of varying transmission over South-East Asia and Africa), we measured Immunoglobulin G (IgG) responses to recombinant P. falciparum gametocyte antigens expressed on the gametocyte plasma membrane and leading transmission blocking vaccine candidates Pfs230 (Pfs230c and Pfs230D1M) and Pfs48/45 at enrolment in 1,114 participants with clinical falciparum malaria. Mixed effects linear and logistic regression were used to determine the association between gametocyte measures (gametocytemia and gametocyte density) and antibody outcomes at enrolment. Results: Microscopy detectable gametocytemia was observed in 11% (127/1,114) of participants at enrolment, and an additional 9% (95/1,114) over the follow-up period (up to day 42) (total 20% of participants [222/1,114]). IgG levels in response to Pfs230c, Pfs48/45 and Pfs230D1M varied across study sites at enrolment (p < 0.001), as did IgG seroprevalence for anti-Pfs230c and D1M IgG (p < 0.001), but not for anti-Pfs48/45 IgG (p = 0.159). In adjusted analyses, microscopy detectable gametocytemia at enrolment was associated with an increase in the odds of IgG seropositivity to the three gametocyte antigens (Pfs230c OR [95% CI], p: 1.70 [1.10, 2.62], 0.017; Pfs48/45: 1.45 [0.85, 2.46], 0.174; Pfs230D1M: 1.70 [1.03, 2.80], 0.037), as was higher gametocyte density at enrolment (per two-fold change in gametocyte density Pfs230c OR [95% CI], p: 1.09 [1.02, 1.17], 0.008; Pfs48/45: 1.05 [0.98, 1.13], 0.185; Pfs230D1M: 1.07 [0.99, 1.14], 0.071). Conclusion: Pfs230 and Pfs48/45 antibodies are naturally immunogenic targets associated with patent gametocytemia and increasing gametocyte density across multiple malaria endemic settings, including regions with emerging artemisinin-resistant P. falciparum.


Subject(s)
Malaria, Falciparum , Malaria , Antibodies, Protozoan , Antigens, Protozoan , Humans , Immunity, Humoral , Immunoglobulin G , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Seroepidemiologic Studies
16.
bioRxiv ; 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36172136

ABSTRACT

SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems. One-sentence summary: Rational treatment strategies for SARS-CoV-2 derived from human PSC models.

17.
Am Nat ; 177(3): 358-67, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21460544

ABSTRACT

All organisms must trade off resource allocation between different life processes that determine their survival and reproduction. Malaria parasites replicate asexually in the host but must produce sexual stages to transmit between hosts. Because different specialized stages are required for these functions, the division of resources between these life-history components is a key problem for natural selection to solve. Despite the medical and economic importance of these parasites, their reproductive strategies remain poorly understood and often seem counterintuitive. Here, we tested recent theory predicting that in-host competition shapes how parasites trade off investment in in-host replication relative to between-host transmission. We demonstrate, across several genotypes, that Plasmodium chabaudi parasites detect the presence of competing genotypes and facultatively respond by reducing their investment in sexual stages in the manner predicted to maximize their competitive ability. Furthermore, we show that genotypes adjust their allocation to sexual stages in line with the availability of exploitable red blood cell resources. Our findings are predicted by evolutionary theory developed to explain life-history trade-offs in more traditionally studied multicellular taxa and suggest that the answer to the long-standing question of why so few transmission stages are produced is that in most natural infections heavy investment in reproduction may compromise in-host survival.


Subject(s)
Biological Evolution , Competitive Behavior , Malaria/parasitology , Malaria/transmission , Microbial Interactions , Plasmodium chabaudi/genetics , Plasmodium chabaudi/physiology , Animals , Gametogenesis , Genetic Variation , Genotype , Male , Metamorphosis, Biological , Mice , Phenotype , Plasmodium chabaudi/growth & development , Reproduction
18.
Front Immunol ; 12: 775659, 2021.
Article in English | MEDLINE | ID: mdl-34925347

ABSTRACT

The Plasmodium falciparum circumsporozoite protein (CSP) forms the basis of leading subunit malaria vaccine candidates. However, the mechanisms and specific targets of immunity are poorly defined. Recent findings suggest that antibody-mediated complement-fixation and activation play an important role in immunity. Here, we investigated the regions of CSP targeted by functional complement-fixing antibodies and the antibody properties associated with this activity. We quantified IgG, IgM, and functional complement-fixing antibody responses to different regions of CSP among Kenyan adults naturally exposed to malaria (n=102) and using a series of rabbit vaccination studies. Individuals who acquired functional complement-fixing antibodies had higher IgG, IgM and IgG1 and IgG3 to CSP. Acquired complement-fixing antibodies targeted the N-terminal, central-repeat, and C-terminal regions of CSP, and positive responders had greater antibody breadth compared to those who were negative for complement-fixing antibodies (p<0.05). Using rabbit vaccinations as a model, we confirmed that IgG specific to the central-repeat and non-repeat regions of CSP could effectively fix complement. However, vaccination with near full length CSP in rabbits poorly induced antibodies to the N-terminal region compared to naturally-acquired immunity in humans. Poor induction of N-terminal antibodies was also observed in a vaccination study performed in mice. IgG and IgM to all three regions of CSP play a role in mediating complement-fixation, which has important implications for malaria vaccine development.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Aged , Animals , Antibody Specificity , Complement Fixation Tests , Humans , Middle Aged , Rabbits , Vaccination , Young Adult
19.
ChemMedChem ; 16(4): 679-693, 2021 02 17.
Article in English | MEDLINE | ID: mdl-32929894

ABSTRACT

Malarial parasites employ actin dynamics for motility, and any disruption to these dynamics renders the parasites unable to effectively establish infection. Therefore, actin presents a potential target for malarial drug discovery, and naturally occurring actin inhibitors such as latrunculins are a promising starting point. However, the limited availability of the natural product and the laborious route for synthesis of latrunculins have hindered their potential development as drug candidates. In this regard, we recently described novel truncated latrunculins, with superior actin binding potency and selectivity towards P. falciparum actin than the canonical latrunculin B. In this paper, we further explore the truncated latrunculin core to summarize the SAR for inhibition of malaria motility. This study helps further understand the binding pattern of these analogues in order to develop them as drug candidates for malaria.


Subject(s)
Antimalarials/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Malaria/drug therapy , Plasmodium falciparum/drug effects , Thiazolidines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry
20.
Front Immunol ; 12: 641421, 2021.
Article in English | MEDLINE | ID: mdl-33815393

ABSTRACT

RTS,S is the leading malaria vaccine in development, but has demonstrated only moderate protective efficacy in clinical trials. RTS,S is a virus-like particle (VLP) that uses the human hepatitis B virus as scaffold to display the malaria sporozoite antigen, circumsporozoite protein (CSP). Particle formation requires four-fold excess scaffold antigen, and as a result, CSP represents only a small portion of the final vaccine construct. Alternative VLP or nanoparticle platforms that reduce the amount of scaffold antigen and increase the amount of the target CSP antigen present in particles may enhance vaccine immunogenicity and efficacy. Here, we describe the production and characterization of a novel VLP that uses the small surface antigen (dS) of duck hepatitis B virus to display CSP. The CSP-dS fusion protein successfully formed VLPs without the need for excess scaffold antigen, and thus CSP represented a larger portion of the vaccine construct. CSP-dS formed large particles approximately 31-74 nm in size and were confirmed to display CSP on the surface. CSP-dS VLPs were highly immunogenic in mice and induced antibodies to multiple regions of CSP, even when administered at a lower vaccine dosage. Vaccine-induced antibodies demonstrated relevant functional activities, including Fc-dependent interactions with complement and Fcγ-receptors, previously identified as important in malaria immunity. Further, vaccine-induced antibodies had similar properties (epitope-specificity and avidity) to monoclonal antibodies that are protective in mouse models. Our novel platform to produce VLPs without excess scaffold protein has wide implications for the future development of vaccines for malaria and other infectious diseases.


Subject(s)
Immunogenicity, Vaccine/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Protozoan/immunology , Malaria, Falciparum/immunology , Mice , Plasmodium falciparum
SELECTION OF CITATIONS
SEARCH DETAIL