Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurosci ; 35(1): 64-73, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25568103

ABSTRACT

Slow waves of non-REM sleep are suggested to play a role in shaping synaptic connectivity to consolidate recently acquired memories and/or restore synaptic homeostasis. During sleep slow waves, both GABAergic neurons of the nucleus reticularis thalami (NRT) and thalamocortical (TC) neurons discharge high-frequency bursts of action potentials mediated by low-threshold calcium spikes due to T-type Ca(2+) channel activation. Although such activity of the intrathalamic network characterized by high-frequency firing and calcium influx is highly suited to modify synaptic efficacy, very little is still known about its consequences on intrathalamic synapse strength. Combining in vitro electrophysiological recordings and calcium imaging, here we show that the inhibitory GABAergic synapses between NRT and TC neurons of the rat somatosensory nucleus develop a long-term depression (I-LTD) when challenged by a stimulation paradigm that mimics the thalamic network activity occurring during sleep slow waves. The mechanism underlying this plasticity presents unique features as it is both heterosynaptic and homosynaptic in nature and requires Ca(2+) entry selectively through T-type Ca(2+) channels and activation of the Ca(2+)-activated phosphatase, calcineurin. We propose that during slow-wave sleep the tight functional coupling between GABAA receptors, calcineurin, and T-type Ca(2+) channels will elicit LTD of the activated GABAergic synapses when coupled with concomitant activation of metabotropic glutamate receptors postsynaptic to cortical afferences. This I-LTD may be a key element involved in the reshaping of the somatosensory information pathway during sleep.


Subject(s)
Calcium Channels, T-Type/physiology , GABAergic Neurons/physiology , Receptors, Metabotropic Glutamate/physiology , Sleep/physiology , Synapses/physiology , Thalamus/physiology , Animals , Long-Term Synaptic Depression/physiology , Male , Rats , Rats, Wistar
2.
J Neurosci ; 30(1): 99-109, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-20053892

ABSTRACT

Although it is well established that low-voltage-activated T-type Ca(2+) channels play a key role in many neurophysiological functions and pathological states, the lack of selective and potent antagonists has so far hampered a detailed analysis of the full impact these channels might have on single-cell and neuronal network excitability as well as on Ca(2+) homeostasis. Recently, a novel series of piperidine-based molecules has been shown to selectively block recombinant T-type but not high-voltage-activated (HVA) Ca(2+) channels and to affect a number of physiological and pathological T-type channel-dependent behaviors. Here we directly show that one of these compounds, 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), exerts a specific, potent (IC(50) = 22 nm), and reversible inhibition of T-type Ca(2+) currents of thalamocortical and reticular thalamic neurons, without any action on HVA Ca(2+) currents, Na(+) currents, action potentials, and glutamatergic and GABAergic synaptic currents. Thus, under current-clamp conditions, the low-threshold Ca(2+) potential (LTCP)-dependent high-frequency burst firing of thalamic neurons is abolished by TTA-P2, whereas tonic firing remains unaltered. Using TTA-P2, we provide the first direct demonstration of the presence of a window component of Ca(2+) channels in neurons and its contribution to the resting membrane potential of thalamic neurons and to the Up state of their intrinsically generated slow (<1 Hz) oscillation. Moreover, we demonstrate that activation of only a small fraction of the T-type channel population is required to generate robust LTCPs, suggesting that LTCP-driven bursts of action potentials can be evoked at depolarized potentials where the vast majority of T-type channels are inactivated.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/physiology , Neurons/physiology , Thalamus/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cats , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Rats , Rats, Wistar , Thalamus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL