Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39258435

ABSTRACT

BACKGROUND: Fractional flow reserve (FFR) has emerged as the invasive gold standard for assessing vessel-specific ischemia. However, FFR measurements are influenced by the hydrostatic effect, which might adversely impact the assessment of ischemia. AIMS: This study aimed to investigate the impact of hydrostatic pressure on FFR measurements by correcting for the height and comparing FFR with [15O]H2O positron emission tomography (PET)-derived relative flow reserve (RFR). METHODS: The 206 patients were included in this analysis. Patients underwent coronary computed tomography angiography (CCTA), [15O]H2O PET, and invasive coronary angiography with routine FFR in every epicardial artery. Height differences between the aortic guiding catheter and distal pressure sensor were quantified on CCTA images. An FFR ≤ 0.80 was considered significant. RESULTS: The study found a reclassification in 7% of the coronary arteries. Notably, 11% of left anterior descending (LAD) arteries were reclassified from hemodynamically significant to nonsignificant. Conversely, 6% of left circumflex (Cx) arteries were reclassified from nonsignificant to significant. After correcting for the hydrostatic pressure effect, the correlation between FFR and PET-derived RFR increased significantly from r = 0.720 to r = 0.786 (p = 0.009). The average magnitude of correction was +0.05 FFR units in the LAD, -0.03 in the Cx, and -0.02 in the right coronary artery. CONCLUSION: Hydrostatic pressure has a small but clinically relevant influence on FFR measurements obtained with a pressure wire. Correcting for this hydrostatic error significantly enhances the correlation between FFR and PET-derived RFR.

2.
Heart Vessels ; 39(4): 299-309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367040

ABSTRACT

Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are invasive techniques used to evaluate the hemodynamic significance of coronary artery stenosis. These methods have been validated through perfusion imaging and clinical trials. New invasive pressure ratios that do not require hyperemia have recently emerged, and it is essential to confirm their diagnostic efficacy. The aim of this study was to validate the resting full-cycle ratio (RFR) and the diastolic pressure ratio (dPR), against [15O]H2O positron emission tomography (PET) imaging. A total of 129 symptomatic patients with an intermediate risk of coronary artery disease (CAD) were included. All patients underwent cardiac [15O]H2O PET with quantitative assessment of resting and hyperemic myocardial perfusion. Within a 2 week period, coronary angiography was performed. Intracoronary pressure measurements were obtained in 320 vessels and RFR, dPR, and FFR were computed. PET derived regional hyperemic myocardial blood flow (hMBF) and myocardial perfusion reserve (MPR) served as reference standards. In coronary arteries with stenoses (43%, 136 of 320), the overall diagnostic accuracies of RFR, dPR, and FFR did not differ when PET hyperemic MBF < 2.3 ml min-1 (69.9%, 70.6%, and 77.1%, respectively) and PET MPR < 2.5 (70.6%, 71.3%, and 66.9%, respectively) were considered as the reference for myocardial ischemia. Non-significant differences between the areas under the receiver operating characteristic (ROC) curve were found between the different indices. Furthermore, the integration of FFR with RFR (or dPR) does not enhance the diagnostic information already achieved by FFR in the characterization of ischemia via PET perfusion. In conclusion, the novel non-hyperemic pressure ratios, RFR and dPR, have a diagnostic performance comparable to FFR in assessing regional myocardial ischemia. These findings suggest that RFR and dPR may be considered as an FFR alternative for invasively guiding revascularization treatment in symptomatic patients with CAD.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Blood Pressure , Cardiac Catheterization , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Positron-Emission Tomography , Coronary Angiography , Coronary Vessels/diagnostic imaging , Predictive Value of Tests
3.
Eur J Nucl Med Mol Imaging ; 50(13): 3897-3909, 2023 11.
Article in English | MEDLINE | ID: mdl-37561140

ABSTRACT

PURPOSE: We sought to assess the impact of coronary revascularization on myocardial perfusion and fractional flow reserve (FFR) in patients without a cardiac history, with prior myocardial infarction (MI) or non-MI percutaneous coronary intervention (PCI). Furthermore, we studied the impact of scar tissue. METHODS: Symptomatic patients underwent [15O]H2O positron emission tomography (PET) and FFR before and after revascularization. Patients with prior CAD, defined as prior MI or PCI, underwent scar quantification by magnetic resonance imaging late gadolinium enhancement. RESULTS: Among 137 patients (87% male, age 62.2 ± 9.5 years) 84 (61%) had a prior MI or PCI. The increase in FFR and hyperemic myocardial blood flow (hMBF) was less in patients with prior MI or non-MI PCI compared to those without a cardiac history (FFR: 0.23 ± 0.14 vs. 0.20 ± 0.12 vs. 0.31 ± 0.18, p = 0.02; hMBF: 0.54 ± 0.75 vs. 0.62 ± 0.97 vs. 0.91 ± 0.96 ml/min/g, p = 0.04). Post-revascularization FFR and hMBF were similar across patients without a cardiac history or with prior MI or non-MI PCI. An increase in FFR was strongly associated to hMBF increase in patients without a cardiac history or with prior MI/non-MI PCI (r = 0.60 and r = 0.60, p < 0.01 for both). Similar results were found for coronary flow reserve. In patients with prior MI scar was negatively correlated to hMBF increase and independently predictive of an attenuated CFR increase. CONCLUSIONS: Post revascularization FFR and perfusion were similar among patients without a cardiac history, with prior MI or non-MI PCI. In patients with prior MI scar burden was associated to an attenuated perfusion increase.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Male , Middle Aged , Aged , Female , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Fractional Flow Reserve, Myocardial/physiology , Coronary Angiography/methods , Cicatrix/diagnostic imaging , Contrast Media , Treatment Outcome , Gadolinium , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy
4.
J Nucl Cardiol ; 30(4): 1558-1569, 2023 08.
Article in English | MEDLINE | ID: mdl-36645580

ABSTRACT

BACKGROUND: Positron emission tomography (PET) is the clinical gold standard for quantifying myocardial blood flow (MBF). Pericoronary adipose tissue (PCAT) attenuation may detect vascular inflammation indirectly. We examined the relationship between MBF by PET and plaque burden and PCAT on coronary CT angiography (CCTA). METHODS: This post hoc analysis of the PACIFIC trial included 208 patients with suspected coronary artery disease (CAD) who underwent [15O]H2O PET and CCTA. Low-attenuation plaque (LAP, < 30HU), non-calcified plaque (NCP), and PCAT attenuation were measured by CCTA. RESULTS: In 582 vessels, 211 (36.3%) had impaired per-vessel hyperemic MBF (≤ 2.30 mL/min/g). In multivariable analysis, LAP burden was independently and consistently associated with impaired hyperemic MBF (P = 0.016); over NCP burden (P = 0.997). Addition of LAP burden improved predictive performance for impaired hyperemic MBF from a model with CAD severity and calcified plaque burden (P < 0.001). There was no correlation between PCAT attenuation and hyperemic MBF (r = - 0.11), and PCAT attenuation was not associated with impaired hyperemic MBF in univariable or multivariable analysis of all vessels (P > 0.1). CONCLUSION: In patients with stable CAD, LAP burden was independently associated with impaired hyperemic MBF and a stronger predictor of impaired hyperemic MBF than NCP burden. There was no association between PCAT attenuation and hyperemic MBF.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Prospective Studies , Coronary Artery Disease/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Tomography, X-Ray Computed , Positron-Emission Tomography , Coronary Angiography/methods , Computed Tomography Angiography/methods , Adipose Tissue/diagnostic imaging , Coronary Vessels/diagnostic imaging , Predictive Value of Tests
5.
Eur Heart J ; 43(33): 3118-3128, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35708168

ABSTRACT

AIMS: The diagnostic performance of non-invasive imaging in patients with prior coronary artery disease (CAD) has not been tested in prospective head-to-head comparative studies. The aim of this study was to compare the diagnostic performance of qualitative single-photon emission computed tomography (SPECT), quantitative positron emission tomography (PET), and qualitative magnetic resonance imaging (MRI) in patients with a prior myocardial infarction (MI) or percutaneous coronary intervention (PCI). METHODS AND RESULTS: In this prospective clinical study, all patients with prior MI and/or PCI and new symptoms of ischaemic CAD underwent 99mTc-tetrofosmin SPECT, [15O]H2O PET, and MRI, followed by invasive coronary angiography with fractional flow reserve (FFR) in all coronary arteries. All modalities were interpreted by core laboratories. Haemodynamically significant CAD was defined by at least one coronary artery with an FFR ≤0.80. Among the 189 enrolled patients, 63% had significant CAD. Sensitivity was 67% (95% confidence interval 58-76%) for SPECT, 81% (72-87%) for PET, and 66% (56-75%) for MRI. Specificity was 61% (48-72%) for SPECT, 65% (53-76%) for PET, and 62% (49-74%) for MRI. Sensitivity of PET was higher than SPECT (P = 0.016) and MRI (P = 0.014), whereas specificity did not differ among the modalities. Diagnostic accuracy for PET (75%, 68-81%) did not statistically differ from SPECT (65%, 58-72%, P = 0.03) and MRI (64%, 57-72%, P = 0.052). Using FFR < 0.75 as a reference, accuracies increased to 69% (SPECT), 79% (PET), and 71% (MRI). CONCLUSION: In this prospective head-to-head comparative study, SPECT, PET, and MRI did not show a significantly different accuracy for diagnosing FFR defined significant CAD in patients with prior PCI and/or MI. Overall diagnostic performances, however, were discouraging and the additive value of non-invasive imaging in this high-risk population is questionable.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Percutaneous Coronary Intervention , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Humans , Myocardial Perfusion Imaging/methods , Predictive Value of Tests , Prospective Studies , Tomography, X-Ray Computed
6.
AJR Am J Roentgenol ; 219(3): 407-419, 2022 09.
Article in English | MEDLINE | ID: mdl-35441530

ABSTRACT

BACKGROUND. Deep learning frameworks have been applied to interpretation of coronary CTA performed for coronary artery disease (CAD) evaluation. OBJECTIVE. The purpose of our study was to compare the diagnostic performance of myocardial perfusion imaging (MPI) and coronary CTA with artificial intelligence quantitative CT (AI-QCT) interpretation for detection of obstructive CAD on invasive angiography and to assess the downstream impact of including coronary CTA with AI-QCT in diagnostic algorithms. METHODS. This study entailed a retrospective post hoc analysis of the derivation cohort of the prospective 23-center Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia (CREDENCE) trial. The study included 301 patients (88 women and 213 men; mean age, 64.4 ± 10.2 [SD] years) recruited from May 2014 to May 2017 with stable symptoms of myocardial ischemia referred for nonemergent invasive angiography. Patients underwent coronary CTA and MPI before angiography with quantitative coronary angiography (QCA) measurements and fractional flow reserve (FFR). CTA examinations were analyzed using an FDA-cleared cloud-based software platform that performs AI-QCT for stenosis determination. Diagnostic performance was evaluated. Diagnostic algorithms were compared. RESULTS. Among 102 patients with no ischemia on MPI, AI-QCT identified obstructive (≥ 50%) stenosis in 54% of patients, including severe (≥ 70%) stenosis in 20%. Among 199 patients with ischemia on MPI, AI-QCT identified nonobstructive (1-49%) stenosis in 23%. AI-QCT had significantly higher AUC (all p < .001) than MPI for predicting ≥ 50% stenosis by QCA (0.88 vs 0.66), ≥ 70% stenosis by QCA (0.92 vs 0.81), and FFR < 0.80 (0.90 vs 0.71). An AI-QCT result of ≥ 50% stenosis and ischemia on stress MPI had sensitivity of 95% versus 74% and specificity of 63% versus 43% for detecting ≥ 50% stenosis by QCA measurement. Compared with performing MPI in all patients and those showing ischemia undergoing invasive angiography, a scenario of performing coronary CTA with AIQCT in all patients and those showing ≥ 70% stenosis undergoing invasive angiography would reduce invasive angiography utilization by 39%; a scenario of performing MPI in all patients and those showing ischemia undergoing coronary CTA with AI-QCT and those with ≥ 70% stenosis on AI-QCT undergoing invasive angiography would reduce invasive angiography utilization by 49%. CONCLUSION. Coronary CTA with AI-QCT had higher diagnostic performance than MPI for detecting obstructive CAD. CLINICAL IMPACT. A diagnostic algorithm incorporating AI-QCT could substantially reduce unnecessary downstream invasive testing and costs. TRIAL REGISTRATION. Clinicaltrials.gov NCT02173275.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Ischemia , Myocardial Perfusion Imaging , Aged , Artificial Intelligence , Computed Tomography Angiography/methods , Constriction, Pathologic , Coronary Angiography/methods , Coronary Stenosis/diagnostic imaging , Female , Humans , Male , Middle Aged , Myocardial Ischemia/diagnostic imaging , Predictive Value of Tests , Prospective Studies , Reference Standards , Retrospective Studies
7.
Catheter Cardiovasc Interv ; 97(4): 614-622, 2021 03.
Article in English | MEDLINE | ID: mdl-32845067

ABSTRACT

OBJECTIVES: This study aimed to investigate the performance of computed tomography derived fractional flow reserve based interactive planner (FFRCT planner) to predict the physiological benefits of percutaneous coronary intervention (PCI) as defined by invasive post-PCI FFR. BACKGROUND: Advances in FFRCT technology have enabled the simulation of hyperemic pressure changes after virtual removal of stenoses. METHODS: In 56 patients (63 vessels) invasive FFR measurements before and after PCI were obtained and FFRCT was calculated using pre-PCI coronary CT angiography. Subsequently, FFRCT and invasive coronary angiography models were aligned allowing virtual removal of coronary stenoses on pre-PCI FFRCT models in the same locations as PCI was performed. Relationships between invasive FFR and FFRCT , between post-PCI FFR and FFRCT planner, and between delta FFR and delta FFRCT were evaluated. RESULTS: Pre PCI, invasive FFR was 0.65 ± 0.12 and FFRCT was 0.64 ± 0.13 (p = .34) with a mean difference of 0.015 (95% CI: -0.23-0.26). Post-PCI invasive FFR was 0.89 ± 0.07 and FFRCT planner was 0.85 ± 0.07 (p < .001) with a mean difference of 0.040 (95% CI: -0.10-0.18). Delta invasive FFR and delta FFRCT were 0.23 ± 0.12 and 0.21 ± 0.12 (p = .09) with a mean difference of 0.025 (95% CI: -0.20-0.25). Significant correlations were found between pre-PCI FFR and FFRCT (r = 0.53, p < .001), between post-PCI FFR and FFRCT planner (r = 0.41, p = .001), and between delta FFR and delta FFRCT (r = 0.57, p < .001). CONCLUSIONS: The non-invasive FFRCT planner tool demonstrated significant albeit modest agreement with post-PCI FFR and change in FFR values after PCI. The FFRCT planner tool may hold promise for PCI procedural planning; however, improvement in technology is warranted before clinical application.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/therapy , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Humans , Predictive Value of Tests , Tomography, X-Ray Computed , Treatment Outcome
8.
Catheter Cardiovasc Interv ; 98(5): E668-E676, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34329539

ABSTRACT

OBJECTIVES: This study evaluated myocardial viability as well as global and regional functional recovery after successful chronic coronary total occlusion (CTO) percutaneous coronary intervention (PCI) using sequential quantitative cardiac magnetic resonance (CMR) imaging. BACKGROUND: The patient benefits of CTO PCI are being questioned. METHODS: In a single high-volume CTO PCI center patients were prospectively scheduled for CMR at baseline and 3 months after successful CTO PCI between 2013 and 2018. Segmental wall thickening (SWT) and percentage late gadolinium enhancement (LGE) were quantitatively measured per segment. Viability was defined as dysfunctional myocardium (<2.84 mm SWT) with no or limited scar (≤50% LGE). RESULTS: A total of 132 patients were included. Improvement of left ventricular ejection fraction was modest after CTO PCI (from 48.1 ± 11.8 to 49.5 ± 12.1%, p < 0.01). CTO segments with viability (N = 216, [31%]) demonstrated a significantly higher increase in SWT (0.80 ± 1.39 mm) compared to CTO segments with pre-procedural preserved function (N = 456 [65%], 0.07 ± 1.43 mm, p < 0.01) or extensive scar (LGE >50%, N = 26 [4%], -0.08 ± 1.09 mm, p < 0.01). Patients with ≥2 CTO segments viability showed more SWT increase in the CTO territory compared to patients with 0-1 segment viability (0.49 ± 0.93 vs. 0.12 ± 0.98 mm, p = 0.03). CONCLUSIONS: Detection of dysfunctional myocardial segments without extensive scar (≤50% LGE) as a marker for viability on CMR aids in identifying patients with significant regional functional recovery after CTO PCI.


Subject(s)
Coronary Occlusion , Percutaneous Coronary Intervention , Chronic Disease , Contrast Media , Coronary Occlusion/diagnostic imaging , Coronary Occlusion/therapy , Gadolinium , Humans , Stroke Volume , Treatment Outcome , Ventricular Function, Left
9.
J Interv Cardiol ; 2021: 4339451, 2021.
Article in English | MEDLINE | ID: mdl-34548847

ABSTRACT

OBJECTIVES: Quantitative flow ratio (QFR) computes fractional flow reserve (FFR) based on invasive coronary angiography (ICA). Residual QFR estimates post-percutaneous coronary intervention (PCI) FFR. This study sought to assess the relationship of residual QFR with post-PCI FFR. METHODS: Residual QFR analysis, using pre-PCI ICA, was attempted in 159 vessels with post-PCI FFR. QFR lesion location was matched with the PCI location to simulate the performed intervention and allow computation of residual QFR. A post-PCI FFR < 0.90 was used to define a suboptimal PCI result. RESULTS: Residual QFR computation was successful in 128 (81%) vessels. Median residual QFR was higher than post-PCI FFR (0.96 Q1-Q3: 0.91-0.99 vs. 0.91 Q1-Q3: 0.86-0.96, p < 0.001). A significant correlation and agreement were observed between residual QFR and post-PCI FFR (R = 0.56 and intraclass correlation coefficient = 0.47, p < 0.001 for both). Following PCI, an FFR < 0.90 was observed in 54 (42%) vessels. Specificity, positive predictive value, sensitivity, and negative predictive value of residual QFR for assessment of the PCI result were 96% (95% confidence interval (CI): 87-99%), 89% (95% CI: 72-96%), 44% (95% CI: 31-59%), and 70% (95% CI: 65-75%), respectively. Residual QFR had an accuracy of 74% (95% CI: 66-82%) and an area under the receiver operating characteristic curve of 0.79 (95% CI: 0.71-0.86). CONCLUSIONS: A significant correlation and agreement between residual QFR and post-PCI FFR were observed. Residual QFR ≥ 0.90 did not necessarily commensurate with a satisfactory PCI (post-PCI FFR ≥ 0.90). In contrast, residual QFR exhibited a high specificity for prediction of a suboptimal PCI result.


Subject(s)
Coronary Stenosis , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , Coronary Angiography , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Humans
10.
Eur J Nucl Med Mol Imaging ; 47(7): 1688-1697, 2020 07.
Article in English | MEDLINE | ID: mdl-31822958

ABSTRACT

PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [15O]H2O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD underwent CMR and [15O]H2O PET. The CMR imaging protocol included late gadolinium enhancement to rule out presence of scar tissue and perfusion imaging using a dual sequence, single bolus technique. Absolute MBF was determined for the three main vascular territories at rest and during vasodilator stress. RESULTS: CMR measurements of regional stress MBF and MFR showed only moderate correlation to those obtained using PET (r = 0.39; P < 0.001 for stress MBF and r = 0.36; P < 0.001 for MFR). Bland-Altman analysis revealed a significant bias of 0.2 ± 1.0 mL/min/g for stress MBF and - 0.5 ± 1.2 for MFR. CMR-derived stress MBF and MFR demonstrated area under the curves of respectively 0.72 (95% CI: 0.65 to 0.79) and 0.76 (95% CI: 0.69 to 0.83) and had optimal cutoff values of 2.35 mL/min/g and 2.25 for detecting abnormal myocardial perfusion, defined as [15O]H2O PET-derived stress MBF ≤ 2.3 mL/min/g and MFR ≤ 2.5. Using these cutoff values, CMR and PET were concordant in 137 (77%) vascular territories for stress MBF and 135 (80%) vascular territories for MFR. CONCLUSION: CMR measurements of stress MBF and MFR showed modest agreement to those obtained with [15O]H2O PET. Nevertheless, stress MBF and MFR were concordant between CMR and [15O]H2O PET in 77% and 80% of vascular territories, respectively.


Subject(s)
Coronary Artery Disease , Coronary Circulation , Magnetic Resonance Spectroscopy , Myocardial Perfusion Imaging , Positron-Emission Tomography , Aged , Contrast Media , Coronary Artery Disease/diagnostic imaging , Female , Fractional Flow Reserve, Myocardial , Gadolinium , Humans , Magnetic Resonance Spectroscopy/standards , Male , Middle Aged , Myocardial Perfusion Imaging/standards , Oxygen Radioisotopes , Positron-Emission Tomography/standards , Reproducibility of Results
11.
Catheter Cardiovasc Interv ; 93(6): 1059-1066, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30430715

ABSTRACT

BACKGROUND: The benefits of chronic coronary total occlusion (CTO) percutaneous coronary intervention (PCI) are being questioned. The aim of this study was to assess the effects of CTO PCI on absolute myocardial perfusion, as compared with PCI of hemodynamically significant non-CTO lesions. METHODS: Consecutive patients with a preserved left ventricular ejection fraction (≥50%) and a CTO or non-CTO lesion, in whom [15 O]H2 O positron emission tomography was performed prior and after successful PCI, were included. Change in quantitative (hyperemic) myocardial blood flow (MBF), coronary flow reserve (CFR) and perfusion defect size (in myocardial segments) were compared between CTOs and non-CTO lesions. RESULTS: In total 92 patients with a CTO and 31 patients with a non-CTO lesion were included. CTOs induced larger perfusion defect sizes (4.51 ± 1.69 vs. 3.23 ± 2.38 segments, P < 0.01) with lower hyperemic MBF (1.30 ± 0.37 vs. 1.58 ± 0.62 mL·min-1 ·g-1 , P < 0.01) and similarly impaired CFR (1.66 ± 0.75 vs. 1.89 ± 0.77, P = 0.17) compared with non-CTO lesions. After PCI both hyperemic MBF and CFR increased similarly between groups (P = 0.57 and 0.35) to normal ranges with higher hyperemic MBF values in non-CTO compared with CTO (2.89 ± 0.94 vs. 2.48 ± 0.73 mL·min-1 ·g-1 , P = 0.03). Perfusion defect sizes decreased similarly after CTO PCI and non-CTO PCI (P = 0.14), leading to small residual defect sizes in both groups (1.15 ± 1.44 vs. 0.61 ± 1.45 segments, P = 0.054). CONCLUSIONS: Myocardial perfusion findings are slightly more hampered in patients with a CTO before and after PCI. Percutaneous revascularization of CTOs, however, improves absolute myocardial perfusion similarly to PCI of hemodynamically significant non-CTO lesions, leading to satisfying results.


Subject(s)
Coronary Occlusion/therapy , Coronary Vessels/diagnostic imaging , Fractional Flow Reserve, Myocardial , Hemodynamics , Myocardial Perfusion Imaging , Percutaneous Coronary Intervention , Positron-Emission Tomography , Aged , Chronic Disease , Coronary Angiography , Coronary Occlusion/diagnostic imaging , Coronary Occlusion/physiopathology , Coronary Vessels/physiopathology , Female , Humans , Male , Middle Aged , Percutaneous Coronary Intervention/adverse effects , Predictive Value of Tests , Prospective Studies , Recovery of Function , Risk Factors , Time Factors , Treatment Outcome
13.
Eur Heart J ; 39(46): 4072-4081, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30452609

ABSTRACT

Aims: Guidelines recommend the use of fractional flow reserve (FFR) to guide percutaneous coronary intervention. For this purpose, physiological lesion assessment without adenosine may have a similar diagnostic accuracy as FFR. We aimed to investigate the performances of FFR, resting instantaneous wave-free ratio (iFR), and resting Pd/Pa compared with [15O]H2O positron emission tomography (PET) perfusion imaging. Methods and results: [15O]H2O PET and intracoronary pressure measurements were evaluated in 320 coronary arteries (of which 136 coronary stenoses) in 129 stable patients. The primary analysis consisting of the area-under-the-receiver-operating-characteristic curve for impaired PET hyperaemic myocardial blood flow (MBF) <2.3 mL⋅min-1⋅g-1 in coronary stenoses was 0.78 [95% confidence interval (CI): 0.70-0.85] for FFR, 0.74 (95% CI: 0.66-0.81) for iFR, and 0.75 (95% CI: 0.67-0.82) for Pd/Pa. No significant differences between area-under-the-receiver-operating-characteristic curve were observed for any two indices compared. In a secondary analysis, the diagnostic accuracy compared with impaired PET hyperaemic MBF in coronary stenoses was 72% (95% CI: 64-79%, κ: 0.44) for FFR ≤0.80, 72% (95% CI: 64-80%, κ: 0.44) for iFR ≤0.89, and 70% (95% CI: 62-78%, κ: 0.40) for Pd/Pa ≤0.92. Other secondary analyses included a comparison of physiological indices with PET hyperaemic MBF in all vessels and all of the aforementioned analyses using PET myocardial perfusion reserve as comparator. Statistical testing for the secondary analyses showed results that were consistent with the results of the primary analysis. Conclusion: Fractional flow reserve, iFR, and Pd/Pa showed a similar performance when compared with PET imaging. Our results support the validity of invasive physiological lesion assessment under resting conditions by iFR or Pd/Pa. Trial registration: Sub-study of the PACIFIC trial with clinicaltrials.gov identifier: NCT01521468.


Subject(s)
Arterial Pressure/physiology , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Fractional Flow Reserve, Myocardial/physiology , Positron-Emission Tomography/methods , Cardiac Catheterization , Coronary Angiography , Coronary Stenosis/diagnosis , Coronary Vessels/diagnostic imaging , Female , Humans , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Severity of Illness Index
14.
JACC Cardiovasc Imaging ; 17(3): 269-280, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37480907

ABSTRACT

BACKGROUND: The recent development of artificial intelligence-guided quantitative coronary computed tomography angiography analysis (AI-QCT) has enabled rapid analysis of atherosclerotic plaque burden and characteristics. OBJECTIVES: This study set out to investigate the 10-year prognostic value of atherosclerotic burden derived from AI-QCT and to compare the spectrum of plaque to manually assessed coronary computed tomography angiography (CCTA), coronary artery calcium scoring (CACS), and clinical risk characteristics. METHODS: This was a long-term follow-up study of 536 patients referred for suspected coronary artery disease. CCTA scans were analyzed with AI-QCT and plaque burden was classified with a plaque staging system (stage 0: 0% percentage atheroma volume [PAV]; stage 1: >0%-5% PAV; stage 2: >5%-15% PAV; stage 3: >15% PAV). The primary major adverse cardiac event (MACE) outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, and all-cause mortality. RESULTS: The mean age at baseline was 58.6 years and 297 patients (55%) were male. During a median follow-up of 10.3 years (IQR: 8.6-11.5 years), 114 patients (21%) experienced the primary outcome. Compared to stages 0 and 1, patients with stage 3 PAV and percentage of noncalcified plaque volume of >7.5% had a more than 3-fold (adjusted HR: 3.57; 95% CI 2.12-6.00; P < 0.001) and 4-fold (adjusted HR: 4.37; 95% CI: 2.51-7.62; P < 0.001) increased risk of MACE, respectively. Addition of AI-QCT improved a model with clinical risk factors and CACS at different time points during follow-up (10-year AUC: 0.82 [95% CI: 0.78-0.87] vs 0.73 [95% CI: 0.68-0.79]; P < 0.001; net reclassification improvement: 0.21 [95% CI: 0.09-0.38]). Furthermore, AI-QCT achieved an improved area under the curve compared to Coronary Artery Disease Reporting and Data System 2.0 (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.023) and manual QCT (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.040), although net reclassification improvement was modest (0.09 [95% CI: -0.02 to 0.29] and 0.04 [95% CI: -0.05 to 0.27], respectively). CONCLUSIONS: Through 10-year follow-up, AI-QCT plaque staging showed important prognostic value for MACE and showed additional discriminatory value over clinical risk factors, CACS, and manual guideline-recommended CCTA assessment.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Male , Female , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Artificial Intelligence , Follow-Up Studies , Predictive Value of Tests , Arteries , Coronary Angiography
15.
J Nucl Med ; 65(2): 279-286, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38176722

ABSTRACT

In patients evaluated for obstructive coronary artery disease (CAD), guidelines recommend using either fractional flow reserve (FFR) or instantaneous wave-free ratio (iFR) to guide coronary revascularization decision-making. The hemodynamic significance of lesions with discordant FFR and iFR measurements is debated. This study compared [15O]H2O PET-derived absolute myocardial perfusion between vessels with concordant and discordant FFR and iFR measurements. Methods: We included 197 patients suspected of obstructive CAD who had undergone [15O]H2O PET perfusion imaging and combined FFR/iFR interrogation in 468 vessels. Resting myocardial blood flow (MBF), hyperemic MBF, and coronary flow reserve (CFR) were compared among 4 groups: FFR low/iFR low (n = 79), FFR high/iFR low (n = 22), FFR low/iFR high (n = 22), and FFR high/iFR high (n = 345). Predefined [15O]H2O PET thresholds for ischemia were 2.3 mL·min-1·g-1 or less for hyperemic MBF and 2.5 or less for CFR. Results: Hyperemic MBF was lower in the concordant low (2.09 ± 0.67 mL·min-1·g-1), FFR high/iFR low (2.41 ± 0.80 mL·min-1·g-1), and FFR low/iFR high (2.40 ± 0.69 mL·min-1·g-1) groups compared with the concordant high group (2.91 ± 0.84 mL·min-1·g-1) (P < 0.001, P = 0.004, and P < 0.001, respectively). A lower CFR was observed in the concordant low (2.37 ± 0.76) and FFR high/iFR low (2.64 ± 0.84) groups compared with the concordant high group (3.35 ± 1.07, P < 0.01 for both). However, for vessels with either low FFR or low iFR, quantitative hyperemic MBF and CFR values exceeded the ischemic threshold in 38% and 49%, respectively. In addition, resting MBF exhibited a negative correlation with iFR (P < 0.001) and was associated with FFR low/iFR high discordance compared with concordant low FFR/low iFR measurements, independent of clinical and angiographic characteristics, as well as hyperemic MBF (odds ratio [OR], 0.41; 95% CI, 0.26-0.65; P < 0.001). Conclusion: We found reduced myocardial perfusion in vessels with concordant low and discordant FFR/iFR measurements. However, FFR/iFR combinations often inaccurately classified vessels as either ischemic or nonischemic when compared with hyperemic MBF and CFR. Furthermore, a lower resting MBF was associated with a higher iFR and the occurrence of FFR low/iFR high discordance. Our study showed that although combined FFR/iFR assessment can be useful to estimate the hemodynamic significance of coronary lesions, these pressure-derived indices provide a limited approximation of [15O]H2O PET-derived quantitative myocardial perfusion as the physiologic standard of CAD severity.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Humans , Fractional Flow Reserve, Myocardial/physiology , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Hemodynamics , Predictive Value of Tests , Severity of Illness Index , Coronary Vessels
16.
J Nucl Med ; 65(7): 1113-1121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724275

ABSTRACT

Currently, cutoffs of quantitative [15O]H2O PET to detect fractional flow reserve (FFR)-defined coronary artery disease (CAD) were derived from a single cohort that included patients without prior CAD. However, prior CAD, sex, and age can influence myocardial blood flow (MBF). Therefore, the present study determined the influence of prior CAD, sex, and age on optimal cutoffs of hyperemic MBF (hMBF) and coronary flow reserve (CFR) and evaluated whether cutoff optimization enhanced diagnostic performance of quantitative [15O]H2O PET against an FFR reference standard. Methods: Patients with chronic coronary symptoms underwent [15O]H2O PET and invasive coronary angiography with FFR. Optimal cutoffs for patients with and without prior CAD and subpopulations based on sex and age were determined. Results: This multicenter study included 560 patients. Optimal cutoffs were similar for patients with (n = 186) and without prior CAD (hMBF, 2.3 vs. 2.3 mL·min-1·g-1; CFR, 2.7 vs. 2.6). Females (n = 190) had higher hMBF cutoffs than males (2.8 vs. 2.3 mL·min-1·g-1), whereas CFRs were comparable (2.6 vs. 2.7). However, female sex-specific hMBF cutoff implementation decreased diagnostic accuracy as compared with the cutoff of 2.3 mL·min-1·g-1 (72% vs. 82%, P < 0.001). Patients aged more than 70 y (n = 79) had lower hMBF (1.7 mL·min-1·g-1) and CFR (2.3) cutoffs than did patients aged 50 y or less, 51-60 y, and 61-70 y (hMBF, 2.3-2.4 mL·min-1·g-1; CFR, 2.7). Age-specific cutoffs in patients aged more than 70 y yielded comparable accuracy to the previously established cutoffs (hMBF, 72% vs. 76%, P = 0.664; CFR, 80% vs. 75%, P = 0.289). Conclusion: Patients with and without prior CAD had similar [15O]H2O PET cutoffs for detecting FFR-defined significant CAD. Stratifying patients according to sex and age led to different optimal cutoffs; however, these values did not translate into an increased overall accuracy as compared with previously established thresholds for MBF.


Subject(s)
Coronary Artery Disease , Oxygen Radioisotopes , Positron-Emission Tomography , Humans , Female , Male , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Middle Aged , Aged , Fractional Flow Reserve, Myocardial , Hemodynamics , Coronary Circulation
17.
JACC Cardiovasc Imaging ; 17(8): 894-906, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38483420

ABSTRACT

BACKGROUND: Noninvasive stress testing is commonly used for detection of coronary ischemia but possesses variable accuracy and may result in excessive health care costs. OBJECTIVES: This study aimed to derive and validate an artificial intelligence-guided quantitative coronary computed tomography angiography (AI-QCT) model for the diagnosis of coronary ischemia that integrates atherosclerosis and vascular morphology measures (AI-QCTISCHEMIA) and to evaluate its prognostic utility for major adverse cardiovascular events (MACE). METHODS: A post hoc analysis of the CREDENCE (Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia) and PACIFIC-1 (Comparison of Coronary Computed Tomography Angiography, Single Photon Emission Computed Tomography [SPECT], Positron Emission Tomography [PET], and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve) studies was performed. In both studies, symptomatic patients with suspected stable coronary artery disease had prospectively undergone coronary computed tomography angiography (CTA), myocardial perfusion imaging (MPI), SPECT, or PET, fractional flow reserve by CT (FFRCT), and invasive coronary angiography in conjunction with invasive FFR measurements. The AI-QCTISCHEMIA model was developed in the derivation cohort of the CREDENCE study, and its diagnostic performance for coronary ischemia (FFR ≤0.80) was evaluated in the CREDENCE validation cohort and PACIFIC-1. Its prognostic value was investigated in PACIFIC-1. RESULTS: In CREDENCE validation (n = 305, age 64.4 ± 9.8 years, 210 [69%] male), the diagnostic performance by area under the receiver-operating characteristics curve (AUC) on per-patient level was 0.80 (95% CI: 0.75-0.85) for AI-QCTISCHEMIA, 0.69 (95% CI: 0.63-0.74; P < 0.001) for FFRCT, and 0.65 (95% CI: 0.59-0.71; P < 0.001) for MPI. In PACIFIC-1 (n = 208, age 58.1 ± 8.7 years, 132 [63%] male), the AUCs were 0.85 (95% CI: 0.79-0.91) for AI-QCTISCHEMIA, 0.78 (95% CI: 0.72-0.84; P = 0.037) for FFRCT, 0.89 (95% CI: 0.84-0.93; P = 0.262) for PET, and 0.72 (95% CI: 0.67-0.78; P < 0.001) for SPECT. Adjusted for clinical risk factors and coronary CTA-determined obstructive stenosis, a positive AI-QCTISCHEMIA test was associated with aHR: 7.6 (95% CI: 1.2-47.0; P = 0.030) for MACE. CONCLUSIONS: This newly developed coronary CTA-based ischemia model using coronary atherosclerosis and vascular morphology characteristics accurately diagnoses coronary ischemia by invasive FFR and provides robust prognostic utility for MACE beyond presence of stenosis.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Vessels , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Predictive Value of Tests , Humans , Male , Female , Middle Aged , Aged , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Reproducibility of Results , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Myocardial Perfusion Imaging/methods , Prognosis , Artificial Intelligence , Radiographic Image Interpretation, Computer-Assisted , Tomography, Emission-Computed, Single-Photon , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/physiopathology
18.
J Cardiovasc Comput Tomogr ; 17(2): 112-119, 2023.
Article in English | MEDLINE | ID: mdl-36670043

ABSTRACT

BACKGROUND: Distinct sex-related differences exist in coronary artery plaque burden and distribution. We aimed to explore sex differences in quantitative plaque burden by coronary CT angiography (CCTA) in relation to ischemia by invasive fractional flow reserve (FFR). METHODS: This post-hoc analysis of the PACIFIC trial included 581 vessels in 203 patients (mean age 58.1 â€‹± â€‹8.7 years, 63.5% male) who underwent CCTA and per-vessel invasive FFR. Quantitative assessment of total, calcified, non-calcified, and low-density non-calcified plaque burden were performed using semiautomated software. Significant ischemia was defined as invasive FFR ≤0.8. RESULTS: The per-vessel frequency of ischemia was higher in men than women (33.5% vs. 7.5%, p â€‹< â€‹0.001). Women had a smaller burden of all plaque subtypes (all p â€‹< â€‹0.01). There was no sex difference on total, calcified, or non-calcified plaque burdens in vessels with ischemia; only low-density non-calcified plaque burden was significantly lower in women (beta: -0.183, p â€‹= â€‹0.035). The burdens of all plaque subtypes were independently associated with ischemia in both men and women (For total plaque burden (5% increase): Men, OR: 1.15, 95%CI: 1.06-1.24, p â€‹= â€‹0.001; Women, OR: 1.96, 95%CI: 1.11-3.46, p â€‹= â€‹0.02). No significant interaction existed between sex and total plaque burden for predicting ischemia (interaction p â€‹= â€‹0.108). The addition of quantitative plaque burdens to stenosis severity and adverse plaque characteristics improved the discrimination of ischemia in both men and women. CONCLUSIONS: In symptomatic patients with suspected CAD, women have a lower CCTA-derived burden of all plaque subtypes compared to men. Quantitative plaque burden provides independent and incremental predictive value for ischemia, irrespective of sex.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Plaque, Atherosclerotic , Humans , Female , Male , Middle Aged , Aged , Computed Tomography Angiography , Predictive Value of Tests , Plaque, Atherosclerotic/complications , Coronary Angiography/methods , Severity of Illness Index
19.
Eur Heart J Cardiovasc Imaging ; 25(1): 116-126, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37578007

ABSTRACT

AIMS: In chronic coronary syndrome (CCS) patients with documented coronary artery disease (CAD), ischaemia detection by myocardial perfusion imaging (MPI) and an invasive approach are viable diagnostic strategies. We compared the diagnostic performance of quantitative flow ratio (QFR) with single-photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiac magnetic resonance imaging (CMR) in patients with prior CAD [previous percutaneous coronary intervention (PCI) and/or myocardial infarction (MI)]. METHODS AND RESULTS: This PACIFIC-2 sub-study evaluated 189 CCS patients with prior CAD for inclusion. Patients underwent SPECT, PET, and CMR followed by invasive coronary angiography with fractional flow reserve (FFR) measurements of all major coronary arteries (N = 567), except for vessels with a sub-total or chronic total occlusion. Quantitative flow ratio computation was attempted in 488 (86%) vessels with measured FFR available (FFR ≤0.80 defined haemodynamically significant CAD). Quantitative flow ratio analysis was successful in 334 (68%) vessels among 166 patients and demonstrated a higher accuracy (84%) and sensitivity (72%) compared with SPECT (66%, P < 0.001 and 46%, P = 0.001), PET (65%, P < 0.001 and 58%, P = 0.032), and CMR (72%, P < 0.001 and 33%, P < 0.001). The specificity of QFR (87%) was similar to that of CMR (83%, P = 0.123) but higher than that of SPECT (71%, P < 0.001) and PET (67%, P < 0.001). Lastly, QFR exhibited a higher area under the receiver operating characteristic curve (0.89) than SPECT (0.57, P < 0.001), PET (0.66, P < 0.001), and CMR (0.60, P < 0.001). CONCLUSION: QFR correlated better with FFR in patients with prior CAD than MPI, as reflected in the higher diagnostic performance measures for detecting FFR-defined, vessel-specific, significant CAD.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Percutaneous Coronary Intervention , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Angiography/methods , Myocardial Perfusion Imaging/methods , Predictive Value of Tests
20.
JACC Cardiovasc Imaging ; 16(2): 193-205, 2023 02.
Article in English | MEDLINE | ID: mdl-35183478

ABSTRACT

BACKGROUND: Clinical reads of coronary computed tomography angiography (CTA), especially by less experienced readers, may result in overestimation of coronary artery disease stenosis severity compared with expert interpretation. Artificial intelligence (AI)-based solutions applied to coronary CTA may overcome these limitations. OBJECTIVES: This study compared the performance for detection and grading of coronary stenoses using artificial intelligence-enabled quantitative coronary computed tomography (AI-QCT) angiography analyses to core lab-interpreted coronary CTA, core lab quantitative coronary angiography (QCA), and invasive fractional flow reserve (FFR). METHODS: Coronary CTA, FFR, and QCA data from 303 stable patients (64 ± 10 years of age, 71% male) from the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were retrospectively analyzed using an Food and Drug Administration-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. RESULTS: Disease prevalence was high, with 32.0%, 35.0%, 21.0%, and 13.0% demonstrating ≥50% stenosis in 0, 1, 2, and 3 coronary vessel territories, respectively. Average AI-QCT analysis time was 10.3 ± 2.7 minutes. AI-QCT evaluation demonstrated per-patient sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 94%, 68%, 81%, 90%, and 84%, respectively, for ≥50% stenosis, and of 94%, 82%, 69%, 97%, and 86%, respectively, for detection of ≥70% stenosis. There was high correlation between stenosis detected on AI-QCT evaluation vs QCA on a per-vessel and per-patient basis (intraclass correlation coefficient = 0.73 and 0.73, respectively; P < 0.001 for both). False positive AI-QCT findings were noted in in 62 of 848 (7.3%) vessels (stenosis of ≥70% by AI-QCT and QCA of <70%); however, 41 (66.1%) of these had an FFR of <0.8. CONCLUSIONS: A novel AI-based evaluation of coronary CTA enables rapid and accurate identification and exclusion of high-grade stenosis and with close agreement to blinded, core lab-interpreted quantitative coronary angiography. (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia [CREDENCE]; NCT02173275).


Subject(s)
Atherosclerosis , Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Ischemia , Humans , Male , Female , Coronary Angiography/methods , Computed Tomography Angiography/methods , Constriction, Pathologic , Artificial Intelligence , Retrospective Studies , Predictive Value of Tests , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL