Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Toxicol Appl Pharmacol ; 408: 115278, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33053406

ABSTRACT

Arsenic is a neurotoxin and environmental exposure to it correlates with an incidence of neurodegenerative diseases. Considering that arsenic has the potential to inhibit autophagic flux, it was hypothesized that arsenite (NaAsO2) may interplay with LRRK2 and α-Synuclein, affecting their phosphorylation in brain regions prone to neurodegeneration. After 15 weeks of chronic exposure to arsenite, a reduction in grip strength of C57BL/6 male mice was observed. Thirty minutes exposure to arsenite increased phosphorylation of Lrrk2 and α-Synuclein in organotypic brain slice cultures from the cerebellum and striatum, respectively. Chronic exposure of mice to a wide-range of concentrations of arsenite led to a significant induction of Lrrk2 phosphorylation in substantia nigra and cerebellum and α-Synuclein phosphorylation in substantia nigra and striatum. Strong correlations between phosphorylated forms of Lrrk2 and α-Synuclein in substantia nigra, Lrrk2 levels between substantia nigra and striatum, and between Lrrk2 in striatum and α-Synuclein in substantia nigra observed in control animals were completely disrupted by arsenic exposure at 50, 500, and 5000 ppb. A transcriptome analysis identified specific genes and canonical pathways that distinguish striatum, substantia nigra, and cerebellum from each other in control animals and compare individual brain regions to arsenite exposed animals. Chronic arsenite exposure altered transcripts of glutathione redox reactions and serotonin receptor signaling in striatum, axonal guidance signaling, NF-κB and androgen signaling in substantia nigra and mitochondrial dysfunction, oxidative phosphorylation, apoptosis and sirtuin signaling in the cerebellum. These data suggest that arsenite affects processes associated with neurodegenerative diseases in brain region specific manner.


Subject(s)
Arsenites/toxicity , Cerebellum/drug effects , Corpus Striatum/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Substantia Nigra/drug effects , alpha-Synuclein/metabolism , Animals , Arsenic Poisoning/genetics , Arsenic Poisoning/metabolism , Arsenic Poisoning/physiopathology , Cerebellum/metabolism , Male , Mice, Inbred C57BL , Muscle Strength/drug effects , Phosphorylation/drug effects , Substantia Nigra/metabolism , Transcriptome/drug effects
2.
Environ Sci Technol ; 51(1): 625-633, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27997141

ABSTRACT

Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.


Subject(s)
Arsenic , Metabolomics , Arsenicals , Environmental Exposure , Female , Humans , Infant, Newborn , Mexico , Pregnancy
3.
Arch Toxicol ; 91(1): 189-202, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26883664

ABSTRACT

Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL/6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation.


Subject(s)
Arsenic Poisoning/enzymology , Arsenic/toxicity , Energy Metabolism/drug effects , Metabolome/drug effects , Methyltransferases/metabolism , Water Pollutants, Chemical/toxicity , Amino Acids/metabolism , Animals , Arsenic/blood , Arsenic/metabolism , Arsenic/urine , Arsenic Poisoning/blood , Arsenic Poisoning/metabolism , Arsenic Poisoning/urine , Arsenicals/blood , Arsenicals/metabolism , Arsenicals/urine , Biomarkers/blood , Biomarkers/urine , Biotransformation , Carbohydrate Metabolism/drug effects , Drug Resistance , Female , Lipid Metabolism/drug effects , Male , Methylation , Methyltransferases/genetics , Mice, Inbred C57BL , Mice, Knockout , Sex Characteristics , Toxicokinetics , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/urine
4.
Environ Health ; 15(1): 62, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27230915

ABSTRACT

BACKGROUND: Because some adverse health effects associated with chronic arsenic exposure may be mediated by methylated arsenicals, interindividual variation in capacity to convert inorganic arsenic into mono- and di-methylated metabolites may be an important determinant of risk associated with exposure to this metalloid. Hence, identifying biological and behavioral factors that modify an individual's capacity to methylate inorganic arsenic could provide insights into critical dose-response relations underlying adverse health effects. METHODS: A total of 904 older adults (≥45 years old) in Churchill County, Nevada, who chronically used home tap water supplies containing up to 1850 µg of arsenic per liter provided urine and toenail samples for determination of total and speciated arsenic levels. Effects of biological factors (gender, age, body mass index) and behavioral factors (smoking, recent fish or shellfish consumption) on patterns of arsenicals in urine were evaluated with bivariate analyses and multivariate regression models. RESULTS: Relative contributions of inorganic, mono-, and di-methylated arsenic to total speciated arsenic in urine were unchanged over the range of concentrations of arsenic in home tap water supplies used by study participants. Gender predicted both absolute and relative amounts of arsenicals in urine. Age predicted levels of inorganic arsenic in urine and body mass index predicted relative levels of mono- and di-methylated arsenic in urine. Smoking predicted both absolute and relative levels of arsenicals in urine. Multivariate regression models were developed for both absolute and relative levels of arsenicals in urine. Concentration of arsenic in home tap water and estimated water consumption were strongly predictive of levels of arsenicals in urine as were smoking, body mass index, and gender. Relative contributions of arsenicals to urinary arsenic were not consistently predicted by concentrations of arsenic in drinking water supplies but were more consistently predicted by gender, body mass index, age, and smoking. CONCLUSIONS: These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for biological and behavioral factors that modify levels of inorganic and methylated arsenicals in urine. Evidence of significant effects of these factors on arsenic metabolism may also support mode of action studies in appropriate experimental models.


Subject(s)
Arsenic/urine , Arsenicals/urine , Environmental Pollutants/urine , Adult , Aged , Aged, 80 and over , Animals , Arsenic/analysis , Arsenic/metabolism , Arsenicals/metabolism , Cotinine/urine , Creatinine/urine , Dose-Response Relationship, Drug , Drinking Water/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Environmental Pollutants/metabolism , Female , Fishes , Food Contamination , Humans , Male , Middle Aged , Nails/chemistry , Nutrition Surveys , Smoking/urine
5.
J Environ Sci (China) ; 49: 104-112, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28007165

ABSTRACT

Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50mg/L As and As3mt-KO mice that cannot tolerate 50mg/L As were exposed to 0, 15, 20, 25 or 30mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%-68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure.


Subject(s)
Arsenic/toxicity , Arsenicals/pharmacology , Water Pollutants, Chemical/toxicity , Animals , Male , Methyltransferases , Mice , Mice, Inbred C57BL , Oxidation-Reduction
6.
Chem Res Toxicol ; 28(6): 1144-55, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26039340

ABSTRACT

There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.


Subject(s)
Arsenic/toxicity , DNA Methylation/drug effects , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/genetics , Urothelium/cytology , Urothelium/drug effects , Adult , Aged , Arsenic/metabolism , Cell Transformation, Neoplastic/chemically induced , DNA Methylation/genetics , Female , Humans , Middle Aged , Urinary Bladder Neoplasms/pathology , Young Adult
7.
J Biochem Mol Toxicol ; 27(2): 106-15, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23315758

ABSTRACT

Biotransformation of inorganic arsenic (iAs) is one of the factors that determines the character and magnitude of the diverse detrimental health effects associated with chronic iAs exposure, but it is unknown how iAs biotransformation may impact the epigenome. Here, we integrated analyses of genome-wide, gene-specific promoter DNA methylation levels of peripheral blood leukocytes with urinary arsenical concentrations of subjects from a region of Mexico with high levels of iAs in drinking water. These analyses revealed dramatic differences in DNA methylation profiles associated with concentrations of specific urinary metabolites of arsenic (As). The majority of individuals in this study had positive indicators of As-related disease, namely pre-diabetes mellitus or diabetes mellitus (DM). Methylation patterns of genes with known associations with DM were associated with urinary concentrations of specific iAs metabolites. Future studies will determine whether these DNA methylation profiles provide mechanistic insight into the development of iAs-associated disease, predict disease risk, and/or serve as biomarkers of iAs exposure in humans.


Subject(s)
Arsenic Poisoning/metabolism , Arsenic/toxicity , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Leukocytes/metabolism , Arsenic/pharmacokinetics , Arsenic Poisoning/genetics , Arsenic Poisoning/pathology , Biomarkers/metabolism , Diabetes Mellitus/chemically induced , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Epigenomics/methods , Female , Genome-Wide Association Study , Humans , Leukocytes/pathology , Male
8.
Toxicol Appl Pharmacol ; 264(1): 121-30, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22868225

ABSTRACT

Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs(III)) or methylarsonous acid (MAs(III)) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs(III) to MAs(III), methylarsonic acid (MAs(V)), dimethylarsinous acid (DMAs(III)), and dimethylarsinic acid (DMAs(V)); MAs(III) was converted to DMAs(III) and DMAs(V). Although neither enzyme required GSH to support methylation of iAs(III) or MAs(III), addition of 1mM GSH decreased K(m) and increased V(max) estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V(max) and K(m) values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1mM GSH, significantly more DMAs(III) was produced from iAs(III) in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs(III). AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic.


Subject(s)
Arsenicals/metabolism , Arsenites/metabolism , Glutathione/metabolism , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Animals , Humans , Methylation/drug effects , Methyltransferases/genetics , Phosphines/metabolism , Polymorphism, Genetic , Rats , Thioredoxin-Disulfide Reductase/metabolism
9.
Toxicol Appl Pharmacol ; 264(3): 439-50, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22959928

ABSTRACT

Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring.


Subject(s)
Arsenites/toxicity , Epigenomics , Folic Acid/pharmacology , Gene Expression Regulation, Developmental/drug effects , Sodium Compounds/toxicity , Animals , Arsenites/administration & dosage , Female , Fetal Weight/drug effects , Fetus/drug effects , Folic Acid/administration & dosage , Folic Acid/blood , Liver/drug effects , Liver/embryology , Liver/metabolism , Male , Mice , Pregnancy , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Sodium Compounds/administration & dosage
10.
Chem Res Toxicol ; 25(1): 216-24, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22136492

ABSTRACT

Glutathione S-transferases, including GST-T1 and GST-M1, are known to be involved in the phase II detoxification pathways for xenobiotics as well as in the metabolism of endogenous compounds. Polymorphisms in these genes have been linked to an increased susceptibility to carcinogenesis and associated with risk factors that predispose to certain inflammatory diseases. In addition, GST-T1 and GST-M1 null genotypes have been shown to be responsible for interindividual variations in the metabolism of arsenic, a known human carcinogen. To assess the specific GST genotypes in the Mexican population chronically exposed to arsenic, we have developed a multiplex High Resolution Melting PCR (HRM-PCR) analysis using a LightCycler480 instrument. This method is based on analysis of the PCR product melting curve that discriminates PCR products according to their lengths and base sequences. Three pairs of primers that specifically recognize GST-T1, GST-M1, and ß-globin, an internal control, to produce amplicons of different length were designed and combined with LightCycler480 High Resolution Melting Master Mix containing ResoLight, a completely saturating DNA dye. Data collected from melting curve analysis were evaluated using LightCycler480 software to determine specific melting temperatures of individual melting curves representing target genes. Using this newly developed multiplex HRM-PCR analysis, we evaluated GST-T1 and GST-M1 genotypes in 504 DNA samples isolated from the blood of individuals residing in Zimapan, Lagunera, and Chihuahua regions in Mexico. We found that the Zimapan and Lagunera populations have similar GST-T1 and GST-M1 genotype frequencies which differ from those of the Chihuahua population. In addition, 14 individuals have been identified as carriers of the double null genotype, i.e., null genotypes in both GST-T1 and GST-M1 genes. Although this procedure does not distinguish between biallelic (+/+) and monoallelic (+/-) genotypes, it can be used in an automated workflow as a simple, sensitive, and time and money saving procedure for rapid identification of the GST-T1 and GST-M1 positive or null genotypes.


Subject(s)
Genotype , Glutathione Transferase/genetics , Multiplex Polymerase Chain Reaction/methods , Adult , Aged , DNA/genetics , Female , Hepatocytes/enzymology , Humans , Male , Mexico , Middle Aged , Polymorphism, Genetic , beta-Globins/genetics
11.
Chem Res Toxicol ; 24(2): 165-7, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21291286

ABSTRACT

Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically exposed individuals are susceptible to arsenicosis or arsenic poisoning. Using a state-of-the-art technique to map the methylomes of our study subjects, we identified a large interactome of hypermethylated genes that are enriched for their involvement in arsenic-associated diseases, such as cancer, heart disease, and diabetes. Notably, we have uncovered an arsenic-induced tumor suppressorome, a complex of 17 tumor suppressors known to be silenced in human cancers. This finding represents a pivotal clue in unraveling a possible epigenetic mode of arsenic-induced disease.


Subject(s)
Arsenic Poisoning/genetics , Arsenic/toxicity , Epigenesis, Genetic , Water Pollutants, Chemical/toxicity , CpG Islands , DNA Methylation , Environmental Exposure/adverse effects , Humans , Mexico , Water Supply
12.
Environ Health ; 10: 73, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21864395

ABSTRACT

BACKGROUND: Human exposures to inorganic arsenic (iAs) have been linked to an increased risk of diabetes mellitus. Recent laboratory studies showed that methylated trivalent metabolites of iAs may play key roles in the diabetogenic effects of iAs. Our study examined associations between chronic exposure to iAs in drinking water, metabolism of iAs, and prevalence of diabetes in arsenicosis-endemic areas of Mexico. METHODS: We used fasting blood glucose (FBG), fasting plasma insulin (FPI), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR) to characterize diabetic individuals. Arsenic levels in drinking water and urine were determined to estimate exposure to iAs. Urinary concentrations of iAs and its trivalent and pentavalent methylated metabolites were measured to assess iAs metabolism. Associations between diabetes and iAs exposure or urinary metabolites of iAs were estimated by logistic regression with adjustment for age, sex, hypertension and obesity. RESULTS: The prevalence of diabetes was positively associated with iAs in drinking water (OR 1.13 per 10 ppb, p < 0.01) and with the concentration of dimethylarsinite (DMAsIII) in urine (OR 1.24 per inter-quartile range, p = 0.05). Notably, FPI and HOMA-IR were negatively associated with iAs exposure (ß -2.08 and -1.64, respectively, p < 0.01), suggesting that the mechanisms of iAs-induced diabetes differ from those underlying type-2 diabetes, which is typically characterized by insulin resistance. CONCLUSIONS: Our study confirms a previously reported, but frequently questioned, association between exposure to iAs and diabetes, and is the first to link the risk of diabetes to the production of one of the most toxic metabolites of iAs, DMAsIII.


Subject(s)
Arsenic/urine , Cacodylic Acid/analogs & derivatives , Diabetes Mellitus/epidemiology , Environmental Exposure/analysis , Adolescent , Adult , Arsenic/analysis , Arsenic/metabolism , Arsenic/toxicity , Arsenic Poisoning/complications , Arsenic Poisoning/diagnosis , Arsenicals/metabolism , Arsenicals/urine , Blood Glucose/analysis , Cacodylic Acid/toxicity , Cacodylic Acid/urine , Cross-Sectional Studies , Diabetes Mellitus/chemically induced , Environmental Exposure/adverse effects , Female , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Humans , Insulin/blood , Insulin Resistance , Male , Mexico/epidemiology , Middle Aged , Prevalence , Water Supply
13.
Sci Rep ; 11(1): 6323, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737669

ABSTRACT

UBE3A is an E3 ubiquitin ligase encoded by the neurally imprinted UBE3A gene. The abundance and subcellular distribution of UBE3A has been the topic of many previous studies as its dosage and localization has been linked to neurodevelopmental disorders including Autism, Dup15q syndrome, and Angelman syndrome. While commercially available antibodies have been widely employed to determine UBE3A localization, an extensive analysis and comparison of the performance of different UBE3A antibodies has not been conducted. Here we evaluated the specificities of seven commercial UBE3A antibodies in two of the major experimental models used in UBE3A research, mouse and human pluripotent stem cell-derived neural cells and tissues. We tested these antibodies in their two most common assays, immunofluorescence and western blot. In addition, we also assessed the ability of these antibodies to capture dynamic spatiotemporal changes of UBE3A by utilizing human cerebral organoid models. Our results reveal that among the seven antibodies tested, three antibodies demonstrated substantial nonspecific immunoreactivity. While four antibodies show specific localization patterns in both mouse brain sections and human cerebral organoids, these antibodies varied significantly in background signals and staining patterns in undifferentiated human pluripotent stem cells.


Subject(s)
Antibodies/genetics , Neurons/metabolism , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/genetics , Angelman Syndrome/pathology , Animals , Antibodies/immunology , Autistic Disorder/genetics , Autistic Disorder/pathology , Cerebellum/cytology , Disease Models, Animal , Genomic Imprinting , Humans , Mice , Neural Stem Cells/metabolism , Neurons/pathology , Organoids/cytology , Pluripotent Stem Cells , Ubiquitin-Protein Ligases/immunology
14.
Toxicol Appl Pharmacol ; 245(1): 47-56, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20138079

ABSTRACT

Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [(73)As]arsenite (iAs(III); 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs(III) to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs(III) than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs(III) was associated with inhibition of DMAs production by moderate concentrations of iAs(III) and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs.


Subject(s)
Arsenic/metabolism , Hepatocytes/metabolism , Animals , Arsenic/toxicity , Cells, Cultured , Dogs , Female , Glutathione/metabolism , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Macaca mulatta , Male , Methylation , Methyltransferases/metabolism , Mice , Middle Aged , Rabbits , Rats , Species Specificity
15.
Arch Toxicol ; 84(1): 3-16, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20020104

ABSTRACT

Metabolism of inorganic arsenic (iAs) is one of the key factors determining the character of adverse effects associated with exposure to iAs. Results of previous studies indicate that liver plays a primary role in iAs metabolism. This paper reviews these results and presents new data that link the capacity of human hepatocytes to metabolize iAs to the expression of specific membrane transporters. Here, we examined relationship between the expression of potential arsenic transporters (AQP9, GLUT2, P-gp, MRP1, MRP2, and MRP3) and the production and cellular retention of iAs and its methylated metabolites in primary cultures of human hepatocytes exposed for 24 h to subtoxic concentrations of arsenite. Our results show that the retention of iAs and methylarsenic metabolites (MAs) by hepatocytes exposed to sub-micromolar concentrations of arsenite correlates negatively with MRP2 expression. A positive correlation was found between MRP2 expression and the production of dimethylarsenic metabolites (DMAs), specifically, the concentration of DMAs in culture media. After exposures to high micromolar concentrations of arsenite which almost completely inhibited MAs and DMAs production, a positive correlation was found between the expression of GLUT2 and cellular retention of iAs and MAs. MRP3, AQP9, or P-gp expression had no effect on the production or distribution of iAs, MAs, or DMAs, regardless of the exposure level. Hepatocytes from seven donors used in this study did not contain detectable amounts of MRP1 protein. These data suggest that MRP2 plays an important role in the efflux of DMAs, thus, regulating kinetics of the methylation reactions and accumulation of iAs and MAs by human hepatocytes. The membrane transport of iAs by high-capacity GLUT2 transporters is not a rate-limiting step for the metabolism of arsenite at low exposure level, but may play a key role in accumulation of iAs after acute exposures which inhibit iAs methylation.


Subject(s)
Arsenic/metabolism , Cell Membrane/metabolism , Liver/metabolism , Membrane Transport Proteins/metabolism , Aged , Aged, 80 and over , Animals , Cells, Cultured , Female , Glucose Transporter Type 2/metabolism , Humans , Male , Methylation , Middle Aged , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism
16.
Stem Cell Reports ; 15(4): 845-854, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32916124

ABSTRACT

Angelman syndrome is a complex neurodevelopmental disorder characterized by delayed development, intellectual disability, speech impairment, and ataxia. It results from the loss of UBE3A protein, an E3 ubiquitin ligase, in neurons of the brain. Despite the dynamic spatiotemporal expression of UBE3A observed in rodents and the potential clinical importance of when and where it is expressed, its expression pattern in humans remains unknown. This reflects a common challenge of studying human neurodevelopment: prenatal periods are hard to access experimentally. In this work, human cerebral organoids reveal a change from weak to strong UBE3A in neuronal nuclei within 3 weeks of culture. Angelman syndrome human induced pluripotent stem cell-derived organoids also exhibit early silencing of paternal UBE3A, with topoisomerase inhibitors partially rescuing UBE3A levels and calcium transient phenotypes. This work establishes human cerebral organoids as an important model for studying UBE3A and motivates their broader use in understanding complex neurodevelopmental disorders.


Subject(s)
Cerebrum/metabolism , Organoids/metabolism , Ubiquitin-Protein Ligases/metabolism , Angelman Syndrome/pathology , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Genomic Imprinting/drug effects , Humans , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Time Factors , Topoisomerase Inhibitors/pharmacology
17.
Toxicol Appl Pharmacol ; 239(2): 200-7, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19538983

ABSTRACT

Exposure to naturally occurring inorganic arsenic (iAs), primarily from contaminated drinking water, is considered one of the top environmental health threats worldwide. Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the biotransformation pathway of iAs. AS3MT catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to trivalent arsenicals, resulting in the production of methylated (MAs) and dimethylated arsenicals (DMAs). MAs is a susceptibility factor for iAs-induced toxicity. In this study, we evaluated the association of the polymorphism in AS3MT gene with iAs metabolism and with the presence of arsenic (As) premalignant skin lesions. This is a case-control study of 71 cases with skin lesions and 51 controls without skin lesions recruited from a iAs endemic area in Mexico. We measured urinary As metabolites, differentiating the trivalent and pentavalent arsenical species, using the hydride generation atomic absorption spectrometry. In addition, the study subjects were genotyped to analyze three single nucleotide polymorphisms (SNPs), A-477G, T14458C (nonsynonymus SNP; Met287Thr), and T35587C, in the AS3MT gene. We compared the frequencies of the AS3MT alleles, genotypes, and haplotypes in individuals with and without skin lesions. Marginal differences in the frequencies of the Met287Thr genotype were identified between individuals with and without premalignant skin lesions (p=0.055): individuals carrying the C (TC+CC) allele (Thr) were at risk [odds ratio=4.28; 95% confidence interval (1.0-18.5)]. Also, individuals with C allele of Met287Thr displayed greater percentage of MAs in urine and decrease in the percentage of DMAs. These findings indicate that Met287Thr influences the susceptibility to premalignant As skin lesions and might be at increased risk for other adverse health effects of iAs exposure.


Subject(s)
Arsenic/toxicity , Methyltransferases/genetics , Polymorphism, Single Nucleotide , Precancerous Conditions/chemically induced , Skin Neoplasms/chemically induced , Water Pollutants, Chemical/toxicity , Adolescent , Adult , Arsenic/urine , Case-Control Studies , Cross-Sectional Studies , DNA/genetics , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Gene Frequency , Genotype , Humans , Male , Mexico/epidemiology , Middle Aged , Mouth Mucosa/cytology , Precancerous Conditions/enzymology , Precancerous Conditions/epidemiology , Precancerous Conditions/genetics , Skin Neoplasms/enzymology , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Water Pollutants, Chemical/urine , Young Adult
18.
Chem Res Toxicol ; 22(10): 1713-20, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19691357

ABSTRACT

The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [(73)As]-arsenate. Mice were radioassayed for up to 96 h after dosing; tissues were collected at 2 and 24 h after dosing. At 2 and 24 h after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 h after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [(73)As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 h after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 h, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in the metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals.


Subject(s)
Arsenates/administration & dosage , Methyltransferases/metabolism , Administration, Oral , Animals , Arsenates/pharmacokinetics , Arsenates/urine , Arsenic Poisoning , Arsenicals/metabolism , Arsenicals/urine , Female , Genotype , Humans , Male , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Tissue Distribution
19.
Toxicology ; 420: 66-72, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30959087

ABSTRACT

Bisphenol S (2,2-bisulfone, BPS) and Bisphenol F (2,2-bis [4-hydroxyphenol]methane, BPF) are analogs of Bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA), a widely used endocrine disrupting compound present in polycarbonate plastics, thermal receipts and epoxy resins that line food cans. Here we examined effects of BPA, BPS, and BPF in low concentrations on differentiation in murine 3T3-L1 preadipocytes. We also fed adult male mice chow with one of three doses of BPF (0, 0.5, 5, 50 mg/kg chow, or approximately 0.044, 0.44 and 4.4 mg/kg body weight per day) for 12 weeks, collected body weights, food intake, and tested for glucose tolerance. The doses of BPF used produced mean concentrations of 0, 6.2, 43.6, and 561 ng/mL in plasma. In 3T3-L1 cells BPS had the greatest effects, along with BPA, both increased expression of several genes required for preadipocyte differentiation over 12 days in culture. In contrast, BPF decreased expression of several genes late in differentiation. This dichotomy was also reflected in lipid accumulation as BPA and BPS treated cells had elevated lipid concentrations compared to controls or cells treated with BPF. Male mice fed either the highest or lowest concentrations of BPF gained less weight than controls with no effects on glucose levels or glucose tolerance. Plasma levels of BPF reflected doses in food with no overlap between doses. In summary, our results suggest that BPS has a strong potential to be obesogenic while effects of BPF are subtler and potentially in the opposite direction.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Phenols/toxicity , Sulfones/toxicity , Weight Gain/drug effects , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Animals , Dose-Response Relationship, Drug , Gene Expression Regulation , Male , Mice , Mice, Inbred ICR , Time Factors
20.
Endocrinology ; 160(8): 1854-1867, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188430

ABSTRACT

Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical. Developmental exposure produces changes in behavior and gene expression in the brain. Here, we examined social recognition behaviors in mice from the third familial generation (F3) after exposure to gestational BPA. Second-generation mice were bred in one of four mating combinations to reveal whether characteristics in F3 were acquired via maternal or paternal exposures. After repeated habituation to the same mouse, offspring of dams from the BPA lineage failed to display increased investigation of a novel mouse. Genes involved in excitatory postsynaptic densities (PSDs) were examined in F3 brains using quantitative PCR. Differential expression of genes important for function and stability of PSDs were assessed at three developmental ages. Several related PSD genes-SH3 and multiple ankyrin repeat domains 1 (Shank1), Homer scaffolding protein 1c (Homer1c), DLG associated protein 1 (Gkap), and discs large MAGUK scaffold protein 4 (PSD95)-were differentially expressed in control- vs BPA-lineage brains. Using a second strain of F3 inbred mice exposed to BPA, we noted the same differences in Shank1 and PSD95 expression in C57BL/6J mice. In sum, transgenerational BPA exposure disrupted social interactions in mice and dysregulated normal expression of PSD genes during neural development. The fact that the same genetic effects were found in two different mouse strains and in several brain regions increased potential for translation. The genetic and functional relationship between PSD and abnormal neurobehavioral disorders is well established, and our data suggest that BPA may contribute in a transgenerational manner to neurodevelopmental diseases.


Subject(s)
Benzhydryl Compounds/toxicity , Fetus/drug effects , Phenols/toxicity , Post-Synaptic Density/drug effects , Social Behavior , Animals , Brain/drug effects , Brain/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL