Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34508652

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
2.
Cytokine ; 137: 155342, 2021 01.
Article in English | MEDLINE | ID: mdl-33130337

ABSTRACT

BACKGROUND: The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts. HYPOTHESIS: Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN. METHODS: Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells. RESULTS: Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP. CONCLUSIONS: Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions.


Subject(s)
Antiviral Agents/immunology , Interferon Type I/immunology , Osteoblasts/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Chlorocebus aethiops , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Interferon Type I/pharmacology , Mice, Knockout , Osteoblasts/metabolism , Osteoblasts/virology , Proteome/immunology , Proteome/metabolism , Proteomics/methods , Vero Cells , Virus Replication/drug effects , Virus Replication/immunology , Zika Virus/physiology , Zika Virus Infection/metabolism , Zika Virus Infection/virology
3.
Matern Child Health J ; 24(9): 1099-1103, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32671537

ABSTRACT

INTRODUCTION: Background cross-reactivity with other coronaviruses may reduce the specificity of COVID-19 rapid serologic tests. The vast majority of women attend prenatal care, which is a unique source of population-based blood samples appropriate for validation studies. We used stored 2018 serum samples from an existing pregnancy cohort study to evaluate the specificity of COVID-19 serologic rapid diagnostic tests. METHODS: We randomly selected 120 stored serum samples from pregnant women enrolled in a cohort in 2018 in Tegucigalpa, Honduras, at least 1 year before the COVID-19 pandemic. We used stored serum to evaluate four lateral flow rapid diagnostic tests, following manufacturers' instructions. Pictures were taken for all tests and read by two blinded trained evaluators. RESULTS: We evaluated 120, 80, 90, and 90 samples, respectively. Specificity for both IgM and IgG was 100% for the first two tests (95% confidence intervals [CI] 97.0-100 and 95.5-100, respectively). The third test had a specificity of 98.9% (95% CI 94.0-100) for IgM and 94.4% (95% CI 87.5-98.2) for IgG. The fourth test had a specificity of 88.9% (95% CI 80.5-94.5) for IgM and 100% (95% CI 96.0-100) for IgG. DISCUSSION: COVID-19 serologic rapid tests are of variable specificity. Blood specimens from sentinel prenatal clinics provide an opportunity to validate serologic tests with population-based samples.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Prenatal Care/methods , Adolescent , Adult , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Female , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Predictive Value of Tests , Pregnancy , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests , Young Adult
4.
Front Med (Lausanne) ; 11: 1390164, 2024.
Article in English | MEDLINE | ID: mdl-38818394

ABSTRACT

Background: The direct acting antiviral remdesivir (RDV) has shown promising results in randomized clinical trials. This study is a unique report of real clinical practice RDV administration for COVID-19 from alpha through delta variant circulation in New Orleans, Louisiana (NOLA). Patients in NOLA have among US worst pre-COVID health outcomes, and the region was an early epicenter for severe COVID. Methods: Data were directly extracted from electronic medical records through REACHnet. Of 9,106 adults with COVID, 1,928 were admitted to inpatient care within 7 days of diagnosis. The propensity score is based upon 22 selected covariates, related to both RDV assignment and outcome of interest. RDV and non-RDV patients were matched 1:1 with replacement, by location and calendar period of admission. Primary and secondary endpoints were, death from any cause and inpatient discharge, within 28 and 14 days after inpatient admission. Results: Of 448 patients treated with RDV, 419 (94%) were successfully matched to a non-RDV patient. 145 (35%) patients received RDV for < 5 days, 235 (56%) for 5 days, and 39 (9%) for > 5 days. 96% of those on RDV received it within 2 days of admission. RDV was more frequently prescribed in patients with pneumonia (standardized difference: 0.75), respiratory failure, hypoxemia, or dependence on supplemental oxygen (0.69), and obesity (0.35) within 5 days prior to RDV initiation or corresponding day in non-RDV patients (index day). RDV patients were numerically more likely to be on steroids within 5 days prior to index day (86 vs. 82%) and within 7 days after inpatient admission (96 vs. 87%). RDV was significantly associated with lower risk of death within 14 days after admission (hazard ratio [HR]: 0.37, 95% CI: 0.19 to 0.69, p = 0.002) but not within 28 days (HR: 0.62, 95% CI: 0.36 to 1.07, p = 0.08). Discharge within 14 days of admission was significantly more likely for RDV patients (p < 0.001) and numerically more likely within 28 days after admission (p = 0.06). Conclusion: Overall, our findings support recommendation of RDV administration for COVID-19 in a highly comorbid, highly impoverished population representative of both Black and White subjects in the US Gulf South.

5.
Sci Rep ; 14(1): 6539, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503862

ABSTRACT

Louisiana experienced high morbidity and mortality from COVID-19. To assess possible explanatory factors, we conducted a cohort study (ClinSeqSer) of patients hospitalized with COVID-19 in New Orleans during August 2020-September 2021. Following enrollment, we reviewed medical charts, and performed SARS-CoV-2 RT-PCR testing on nasal and saliva specimens. We used multivariable logistic regression to assess associations between patient characteristics and severe illness, defined as ≥ 6 L/min oxygen or intubation. Among 456 patients, median age was 56 years, 277 (60.5%) were Black non-Hispanic, 436 (95.2%) had underlying health conditions, and 358 were unvaccinated (92.0% of 389 verified). Overall, 187 patients (40.1%) had severe illness; 60 (13.1%) died during admission. In multivariable models, severe illness was associated with age ≥ 65 years (OR 2.08, 95% CI 1.22-3.56), hospitalization > 5 days after illness onset (OR 1.49, 95% CI 1.01-2.21), and SARS CoV-2 cycle threshold (Ct) result of < 32 in saliva (OR 4.79, 95% CI 1.22-18.77). Among patients who were predominantly Black non-Hispanic, unvaccinated and with underlying health conditions, approximately 1 in 3 patients had severe COVID-19. Older age and delayed time to admission might have contributed to high case-severity. An association between case-severity and low Ct value in saliva warrants further investigation.


Subject(s)
COVID-19 , Humans , Middle Aged , Aged , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Cohort Studies , New Orleans , Hospitalization
6.
Viruses ; 13(2)2021 02 02.
Article in English | MEDLINE | ID: mdl-33540576

ABSTRACT

Infections with SARS-CoV-2 can progress toward multiple clinical outcomes, and the identification of factors associated with disease severity would represent a major advance to guide care and improve prognosis. We tested for associations between SARS-CoV-2 genomic variants from an international cohort of 2508 patients and mortality rates. Findings were validated in a second cohort. Phylogenetic analysis of SARS-CoV-2 genome sequences revealed four well-resolved clades which had significantly different mortality rates, even after adjusting for patient demographic and geographic characteristics. We further identified ten single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 genome that were associated with patient mortality. Three SNPs remained associated with mortality in a generalized linear model (GLM) that also included patient age, sex, geographic region, and month of sample collection. Multiple SNPs were confirmed in the validation cohort. These SNPs represent targets to assess the mechanisms underlying COVID-19 disease severity and warrant straightforward validation in functional studies.


Subject(s)
COVID-19/mortality , COVID-19/virology , Genome, Viral , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Adult , Age Distribution , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Phylogeny
7.
Viruses ; 13(7)2021 06 23.
Article in English | MEDLINE | ID: mdl-34201591

ABSTRACT

A 59-year-old male with follicular lymphoma treated by anti-CD20-mediated B-cell depletion and ablative chemotherapy was hospitalized with a COVID-19 infection. Although the patient did not develop specific humoral immunity, he had a mild clinical course overall. The failure of all therapeutic options allowed infection to persist nearly 300 days with active accumulation of SARS-CoV-2 virus mutations. As a rescue therapy, an infusion of REGEN-COV (10933 and 10987) anti-spike monoclonal antibodies was performed 270 days from initial diagnosis. Due to partial clearance after the first dose (2.4 g), a consolidation dose (8 g) was infused six weeks later. Complete virus clearance could then be observed over the following month, after he was vaccinated with the Pfizer-BioNTech anti-COVID-19 vaccination. The successful management of this patient required prolonged enhanced quarantine, monitoring of virus mutations, pioneering clinical decisions based upon close consultation, and the coordination of multidisciplinary experts in virology, immunology, pharmacology, input from REGN, the FDA, the IRB, the health care team, the patient, and the patient's family. Current decisions to take revolve around patient's follicular lymphoma management, and monitoring for virus clearance persistence beyond disappearance of REGEN-COV monoclonal antibodies after anti-SARS-CoV-2 vaccination. Overall, specific guidelines for similar cases should be established.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/complications , Humans , Immunity, Humoral , Lymphocyte Depletion , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/therapy , Male , Middle Aged , SARS-CoV-2/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
8.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: mdl-34835131

ABSTRACT

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Age Distribution , Alphacoronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Blood Donors , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Cross Reactions , Epitopes , Female , Humans , Male , Phosphoproteins/immunology , Sierra Leone , United States , Viral Pseudotyping
9.
medRxiv ; 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33564781

ABSTRACT

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.

10.
Biosens Bioelectron ; 164: 112316, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32553350

ABSTRACT

Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.


Subject(s)
Betacoronavirus/isolation & purification , CRISPR-Cas Systems , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Base Sequence , Betacoronavirus/genetics , Biosensing Techniques/methods , Biosensing Techniques/statistics & numerical data , COVID-19 , Coronavirus Infections/virology , Fluorescent Dyes , Genes, Viral , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
11.
Leuk Lymphoma ; 43(4): 719-24, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12153156

ABSTRACT

The study presented here, performed on the bone marrow from patients with idiopathic myelofibrosis (MF) and on a murine model of MF, demonstrates a pathological interaction between PMN leukocytes and megakaryocyte (Mk), correlated with MF development. The data obtained revealed abnormal subcellular P-selectin distribution, which appeared to correlate with excessive and pathological emperipolesis of PMN leukocytes within Mk, leading to the destruction of Mk storage organelles and leakage of alpha-granular contents into the bone marrow microenvironment. The prominent role of growth factors, PDGF and TGFbeta, stored in the Mk alpha-granular compartment in the generation of MF has been previously largely documented. Both growth factors are essential for the Mk-dependent fibroblast proliferation. The destructive mutual cellular interaction of Mk and PMN leading to the pathological release of PDGF and TGFbeta within the bone marrow microenvironment may participate, through fibroblast activation, to the generation of MF. Therefore, this study provides insight into the possible pathophysiological mechanisms for the genesis of MF.


Subject(s)
Cell Communication , Megakaryocytes/physiology , Neutrophils/physiology , Primary Myelofibrosis/etiology , Animals , Bone Marrow/ultrastructure , Cell Division , Disease Models, Animal , Humans , Megakaryocytes/ultrastructure , Mice , Microscopy, Electron , P-Selectin/analysis , Primary Myelofibrosis/pathology , Thrombopoietin/genetics
13.
Platelets ; 16(1): 13-8, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15763891

ABSTRACT

Shear stress encountered in stenosed human arteries is able to induce a certain range of platelet activation. In order to determine the extent of platelet shape change induced by high shear rate conditions, we used electron microscopy (EM) and immuno-EM to study platelet ultrastructure from blood flowing in vivo through stenosed arteries. Then it was compared with platelets from healthy controls exposed in vitro to a shear rate of 4000 s(-1). Six patients with stenosed arteries (iliac, femoral and renal) were investigated at the time of transcutaneous angiography. Blood was harvested from the same catheter in the stenosed artery and in the abdominal aortic artery (control sample), each patient being its own control. The percentage of platelets with shape changes (loss of discoid form, pseudopod emission, organelle centralisation) significantly increased in samples from stenosed arteries. Shape change was concomitant with the membrane glycoprotein IIb-IIIa distribution at the pseudopod extremities. These activated platelets had not completed secretion and were maintained in a reversible activation state. Similar results were obtained on platelets from healthy donors submitted in vitro to a high shear rate. In conclusion, this study shows that the high shear rate encountered in human stenosed arteries is able to induce shape change and reversible activation of platelets in vivo.


Subject(s)
Arteries/pathology , Blood Platelets/pathology , Constriction, Pathologic/blood , Platelet Activation , Platelet Membrane Glycoproteins/metabolism , Aged , Blood Platelets/ultrastructure , Case-Control Studies , Cell Shape , Female , Humans , Male , Microscopy, Electron , Protein Transport , Stress, Mechanical
14.
Blood ; 99(11): 4021-9, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12010803

ABSTRACT

Platelets can bind and phagocytose infectious microorganisms and so enable their transport for a prolonged time. To investigate the subcellular events of these interactions, platelets were incubated either with Staphylococcus aureus or with HIV and analyzed by electron microscopy (EM) and immuno-EM. HIV and bacteria internalization occurred exclusively within platelets showing morphological evidence of activation. Platelet activation enhanced the degree of bacterial internalization. Immunolabeling revealed that the engulfing vacuoles and the open canalicular system (OCS) were composed of distinct antigens. The engulfing vacuoles eventually became the site of prominent alpha-granule release. In platelets incubated with HIV, characteristic endocytic vacuoles were identified close to the plasma membrane, tightly surrounding 1 or 2 HIV particles. Virus particles were also located within the OCS. Immunogold labeling for the viral core protein p24 confirmed the presence of HIV within platelets. Finally, examination of platelets from a patient with acquired immunodeficiency syndrome and high viremia suggested that HIV endocytosis may also occur in vivo.


Subject(s)
Blood Platelets/microbiology , Blood Platelets/physiology , HIV-1/physiology , Phagocytosis , Platelet Activation/physiology , Staphylococcus aureus/physiology , Blood Platelets/ultrastructure , Humans , Microscopy, Immunoelectron , Platelet Activation/drug effects , Subcellular Fractions/microbiology , Subcellular Fractions/virology , Thrombin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL