Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38485690

ABSTRACT

MOTIVATION: The acquisition of somatic mutations in hematopoietic stem and progenitor stem cells with resultant clonal expansion, termed clonal hematopoiesis (CH), is associated with increased risk of hematologic malignancies and other adverse outcomes. CH is generally present at low allelic fractions, but clonal expansion and acquisition of additional mutations leads to hematologic cancers in a small proportion of individuals. With high depth and high sensitivity sequencing, CH can be detected in most adults and its clonal trajectory mapped over time. However, accurate CH variant calling is challenging due to the difficulty in distinguishing low frequency CH mutations from sequencing artifacts. The lack of well-validated bioinformatic pipelines for CH calling may contribute to lack of reproducibility in studies of CH. RESULTS: Here, we developed ArCH, an Artifact filtering Clonal Hematopoiesis variant calling pipeline for detecting single nucleotide variants and short insertions/deletions by combining the output of four variant calling tools and filtering based on variant characteristics and sequencing error rate estimation. ArCH is an end-to-end cloud-based pipeline optimized to accept a variety of inputs with customizable parameters adaptable to multiple sequencing technologies, research questions, and datasets. Using deep targeted sequencing data generated from six acute myeloid leukemia patient tumor: normal dilutions, 31 blood samples with orthogonal validation, and 26 blood samples with technical replicates, we show that ArCH improves the sensitivity and positive predictive value of CH variant detection at low allele frequencies compared to standard application of commonly used variant calling approaches. AVAILABILITY AND IMPLEMENTATION: The code for this workflow is available at: https://github.com/kbolton-lab/ArCH.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Adult , Humans , High-Throughput Nucleotide Sequencing , Software , Reproducibility of Results , Mutation , Hematopoiesis/genetics
2.
Circulation ; 148(15): 1165-1178, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37681311

ABSTRACT

BACKGROUND: Clonal hematopoiesis (CH), which results from an array of nonmalignant driver gene mutations, can lead to altered immune cell function and chronic disease, and has been associated with worse outcomes in patients with heart failure (HF) with reduced ejection fraction. However, the role of CH in the prognosis of HF with preserved ejection fraction (HFpEF) has been understudied. This study aimed to characterize CH in patients with HFpEF and elucidate its causal role in a murine model. METHODS: Using a panel of 20 candidate CH driver genes and a variant allele fraction cutoff of 0.5%, ultradeep error-corrected sequencing identified CH in a cohort of 81 patients with HFpEF (mean age, 71±6 years; ejection fraction, 63±5%) and 36 controls without a diagnosis of HFpEF (mean age, 74±7 years; ejection fraction, 61.5±8%). CH was also evaluated in a replication cohort of 59 individuals with HFpEF. RESULTS: Compared with controls, there was an enrichment of TET2-mediated CH in the HFpEF patient cohort (12% versus 0%, respectively; P=0.02). In the HFpEF cohort, patients with CH exhibited exacerbated diastolic dysfunction in terms of E/e' (14.9 versus 11.7, respectively; P=0.0096) and E/A (1.69 versus 0.89, respectively; P=0.0206) compared with those without CH. The association of CH with exacerbated diastolic dysfunction was corroborated in a validation cohort of individuals with HFpEF. In accordance, patients with HFpEF, an age ≥70 years, and CH exhibited worse prognosis in terms of 5-year cardiovascular-related hospitalization rate (hazard ratio, 5.06; P=0.042) compared with patients with HFpEF and an age ≥70 years without CH. To investigate the causal role of CH in HFpEF, nonconditioned mice underwent adoptive transfer with Tet2-wild-type or Tet2-deficient bone marrow and were subsequently subjected to a high-fat diet/L-NAME (Nω-nitro-l-arginine methyl ester) combination treatment to induce features of HFpEF. This model of Tet2-CH exacerbated cardiac hypertrophy by heart weight/tibia length and cardiomyocyte size, diastolic dysfunction by E/e' and left ventricular end-diastolic pressure, and cardiac fibrosis compared with the Tet2-wild-type condition. CONCLUSIONS: CH is associated with worse heart function and prognosis in patients with HFpEF, and a murine experimental model of Tet2-mediated CH displays greater features of HFpEF.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Mice , Animals , Aged , Aged, 80 and over , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/drug therapy , Stroke Volume , Ventricular Function, Left , Clonal Hematopoiesis/genetics , Ventricular Dysfunction, Left/genetics
3.
J Med Genet ; 56(7): 427-433, 2019 07.
Article in English | MEDLINE | ID: mdl-30803986

ABSTRACT

INTRODUCTION: Adolescent idiopathic scoliosis (AIS) is a common musculoskeletal disorder with strong evidence for a genetic contribution. CNVs play an important role in congenital scoliosis, but their role in idiopathic scoliosis has been largely unexplored. METHODS: Exome sequence data from 1197 AIS cases and 1664 in-house controls was analysed using coverage data to identify rare CNVs. CNV calls were filtered to include only highly confident CNVs with >10 average reads per region and mean log-ratio of coverage consistent with single-copy duplication or deletion. The frequency of 55 common recurrent CNVs was determined and correlated with clinical characteristics. RESULTS: Distal chromosome 16p11.2 microduplications containing the gene SH2B1 were found in 0.7% of AIS cases (8/1197). We replicated this finding in two additional AIS cohorts (8/1097 and 2/433), resulting in 0.7% (18/2727) of all AIS cases harbouring a chromosome 16p11.2 microduplication, compared with 0.06% of local controls (1/1664) and 0.04% of published controls (8/19584) (p=2.28×10-11, OR=16.15). Furthermore, examination of electronic health records of 92 455 patients from the Geisinger health system showed scoliosis in 30% (20/66) patients with chromosome 16p11.2 microduplications containing SH2B1 compared with 7.6% (10/132) of controls (p=5.6×10-4, OR=3.9). CONCLUSIONS: Recurrent distal chromosome 16p11.2 duplications explain nearly 1% of AIS. Distal chromosome 16p11.2 duplications may contribute to scoliosis pathogenesis by directly impairing growth or by altering expression of nearby genes, such as TBX6. Individuals with distal chromosome 16p11.2 microduplications should be screened for scoliosis to facilitate early treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromosome Duplication , Chromosomes, Human, Pair 16 , Genetic Association Studies , Genetic Predisposition to Disease , Scoliosis/diagnosis , Scoliosis/genetics , Case-Control Studies , Chromosome Mapping , Computational Biology/methods , DNA Copy Number Variations , Female , Genetic Association Studies/methods , Heterozygote , Humans , Male , Phenotype , Scoliosis/epidemiology , Sequence Deletion , Exome Sequencing
4.
Blood ; 129(22): 2988-2992, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28408465

ABSTRACT

The generation of hematopoietic stem cells from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. Achieving this goal is complicated by our incomplete understanding of the mechanism regulating definitive hematopoietic specification. We used our stage-specific hPSC differentiation method to obtain and identify, via CD235a expression, mesoderm harboring exclusively primitive or definitive hematopoietic potential to understand the genetic regulation of definitive hematopoietic specification. Whole-transcriptome gene expression analyses on WNT-dependent KDR+CD235a- definitive hematopoietic mesoderm and WNT-independent KDR+CD235a+ primitive hematopoietic mesoderm revealed strong CDX gene expression within definitive hematopoietic mesoderm. Temporal expression analyses revealed that CDX4 was expressed exclusively within definitive hematopoietic KDR+CD235a- mesoderm in a WNT- and fibroblast growth factor-dependent manner. We found that exogenous CDX4 expression exclusively during mesoderm specification resulted in a >90% repression in primitive hematopoietic potential, but conferred fivefold greater definitive hematopoietic potential, similar to that observed following WNT stimulation. In contrast, CDX4 knockout hPSCs had intact primitive hematopoietic potential, but exhibited a fivefold decrease in multilineage definitive hematopoietic potential. Taken together, these findings indicate that CDX4 is a critical transcription factor in the regulation of human definitive hematopoietic specification, and provides a mechanistic basis for WNT-mediated definitive hematopoietic specification from hPSCs.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Line , Cell Lineage/genetics , Cell Lineage/physiology , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Glycophorins/metabolism , Hematopoiesis/genetics , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/genetics , Humans , Mesoderm/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Wnt Signaling Pathway
5.
Haematologica ; 104(12): 2410-2417, 2019 12.
Article in English | MEDLINE | ID: mdl-31004019

ABSTRACT

Nearly all adults harbor acute myeloid leukemia (AML)-related clonal hematopoietic mutations at a variant allele fraction (VAF) of ≥0.0001, yet relatively few develop hematologic malignancies. We conducted a nested analysis in the Nurses' Health Study and Health Professionals Follow-Up Study blood subcohorts, with up to 22 years of follow up to investigate associations of clonal mutations of ≥0.0001 allele frequency with future risk of AML. We identified 35 cases with AML that had pre-diagnosis peripheral blood samples and matched two controls without history of cancer per case by sex, age, and ethnicity. We conducted blinded error-corrected sequencing on all study samples and assessed variant-associated risk using conditional logistic regression. We detected AML-associated mutations in 97% of all participants (598 mutations, 5.8/person). Individuals with mutations ≥0.01 variant allele fraction had a significantly increased AML risk (OR 5.4, 95%CI: 1.8-16.6), as did individuals with higher-frequency clones and those with DNMT3A R882H/C mutations. The risk of lower-frequency clones was less clear. In the 11 case-control sets with samples banked ten years apart, clonal mutations rarely expanded over time. Our findings are consistent with published evidence that detection of clonal mutations ≥0.01 VAF identifies individuals at increased risk for AML. Further study of larger populations, mutations co-occurring within the same pre-leukemic clone and other risk factors (lifestyle, epigenetics, etc.), are still needed to fully elucidate the risk conferred by low-frequency clonal hematopoiesis in asymptomatic adults.


Subject(s)
Biomarkers, Tumor/genetics , Clonal Evolution , Clone Cells/pathology , Hematopoiesis , Leukemia, Myeloid, Acute/pathology , Mutation , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Female , Follow-Up Studies , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/etiology , Male , Middle Aged , Prognosis , Risk Factors
6.
J Pediatr Hematol Oncol ; 41(2): 133-136, 2019 03.
Article in English | MEDLINE | ID: mdl-30028825

ABSTRACT

Identification of patients with cancer predisposition syndromes (CPSs) can provide vital information to guide care of an existing cancer, survey for future malignancy, and counsel families. The same underlying mutation responsible for a CPS may also result in other phenotypic abnormalities amenable to therapeutic intervention. The purpose of this study was to examine patients followed in our multidisciplinary CPS clinic to determine the prevalence and scope of medical and psychosocial needs. Data from a baseline evaluation of a single-center patient registry was reviewed. Eligible patients included those with a known or suspected CPS. Over 3 years, 73 patients consented and had successful follow-up. Utilization rate of special therapies, defined as speech therapy, occupational therapy, and/or physical therapy, in the CPS population was 50.7%, significantly higher than a representative sample of children with special needs. Prevalence of 504/IEP (Individualized Education Program) utilization was 20.5%. Patients with CPSs have a high prevalence of medical and psychosocial needs beyond their risk for cancer, for which early screening for necessary interventions should be offered to maximize the patient's developmental potential. Future research is needed to further define the developmental and cognitive phenotypes of these syndromes, and to evaluate the effectiveness of subsequent interventions.


Subject(s)
Cancer Care Facilities , Genetic Predisposition to Disease/psychology , Registries , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Neoplasms/epidemiology , Neoplasms/genetics , Neoplasms/psychology , Neoplasms/therapy , Prevalence , Psychology
7.
Am J Med Genet A ; 173(10): 2670-2679, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28851129

ABSTRACT

Congenital anomalies that are diagnosed in at least 120,000 US infants every year are the leading cause of infant death and contribute to disability and pediatric hospitalizations. Several large-scale epidemiologic studies have provided substantial evidence of an association between congenital anomalies and cancer risk in children, suggesting potential underlying cancer-predisposing conditions and the involvement of developmental genetic pathways. Electronic medical records from 1,107 pediatric, adolescent, and young adult oncology patients were reviewed. The observed number (O) of congenital anomalies among children with a specific pediatric cancer subtype was compared to the expected number (E) of anomalies based on the frequency of congenital anomalies in the entire study population. The O/E ratios were tested for significance using Fisher's exact test. The Kaplan-Meier method was used to compare overall and neurological malignancy survival rates following tumor diagnosis. Thirteen percent of patients had a congenital anomaly diagnosis prior to their cancer diagnosis. When stratified by congenital anomaly subtype, there was an excess of neurological anomalies among children with central nervous system tumors (O/E = 1.56, 95%CI 1.13-2.09). Male pediatric cancer patients were more likely than females to have a congenital anomaly, particularly those <5 years of age (O/E 1.35, 95%CI 0.97-1.82). Our study provides additional insight into the association between specific congenital anomaly types and pediatric cancer development. Moreover, it may help to inform the development of new screening policies and support hypothesis-driven research investigating mechanisms underlying tumor predisposition in children with congenital anomalies.


Subject(s)
Congenital Abnormalities/epidemiology , Neoplasms/complications , Neurodevelopmental Disorders/epidemiology , Adolescent , Adult , Child , Child, Preschool , Congenital Abnormalities/genetics , Congenital Abnormalities/mortality , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Neoplasms/genetics , Neoplasms/mortality , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/mortality , Prognosis , Retrospective Studies , Survival Rate , Young Adult
8.
Paediatr Perinat Epidemiol ; 31(6): 563-572, 2017 11.
Article in English | MEDLINE | ID: mdl-28940632

ABSTRACT

BACKGROUND: Infant leukaemia (IL) is extremely rare with fewer than 150 cases occurring each year in the United States. Little is known about its causes. However, recent evidence supports a role of de novo mutations in IL aetiology. Parental age has been associated with several adverse outcomes in offspring, including childhood cancers. Given the role of older parental age in de novo mutations in offspring, we carried out an analysis of parental age and IL. METHODS: We evaluated the relationship between parental age and IL in a case-control study using registry data from New York, Minnesota, California, Texas, and Washington. Records from 402 cases [219 acute lymphoblastic leukaemia (ALL), 131 acute myeloid leukaemia (AML), and 52 other] and 45 392 controls born during 1981-2004 were analysed. Odds ratios (OR) and 95% confidence intervals (CI) were calculated by logistic regression. Estimates were adjusted for infant sex, birth year category, maternal race, state, and mutually adjusted for paternal or maternal age, respectively. RESULTS: Infants with mothers' age ≥40 years had an increased risk of developing AML (OR 4.80, 95% CI 1.80, 12.76). In contrast, paternal age <20 was associated with increased risk of ALL (OR 3.69, 95% CI 1.62, 8.41). CONCLUSION: This study demonstrates increased risk of infant ALL in relation to young paternal age. Given record linkage, there is little concern with recall or selection bias, although data are lacking on MLL gene status and other potentially important variables. Parent of origin effects, de novo mutations, and/or carcinogenic exposures may be involved in IL aetiology.


Subject(s)
Leukemia, Myeloid, Acute , Maternal Age , Paternal Age , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Female , Humans , Infant, Newborn , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/epidemiology , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Risk Assessment , Risk Factors , Statistics as Topic , United States/epidemiology
9.
BMC Geriatr ; 16: 80, 2016 Apr 09.
Article in English | MEDLINE | ID: mdl-27060904

ABSTRACT

BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually or as a group across an entire gene for association to aging phenotypes using family based tests. RESULTS: We found significant associations to three genes and nine single variants. Most notably, we found a novel variant significantly associated with exceptional survival in the 3' UTR OBFC1 in 13 individuals from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation that was significantly associated with three phenotypes (GSK3B with the Healthy Aging Index, NOTCH1 with diastolic blood pressure and TP53 with serum HDL). CONCLUSIONS: Sequencing analysis of family-based associations for age-related phenotypes can identify rare or novel variants.


Subject(s)
Genetic Association Studies , High-Throughput Nucleotide Sequencing , Longevity/genetics , Pedigree , Phenotype , Aged , Female , Genetic Testing , Genetic Variation/genetics , Humans , Male
10.
Nucleic Acids Res ; 42(10): e82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24682816

ABSTRACT

Despite declining sequencing costs, few methods are available for cost-effective single-nucleotide polymorphism (SNP), insertion/deletion (INDEL) and copy number variation (CNV) discovery in a single assay. Commercially available methods require a high investment to a specific region and are only cost-effective for large samples. Here, we introduce a novel, flexible approach for multiplexed targeted sequencing and CNV analysis of large genomic regions called multiplexed direct genomic selection (MDiGS). MDiGS combines biotinylated bacterial artificial chromosome (BAC) capture and multiplexed pooled capture for SNP/INDEL and CNV detection of 96 multiplexed samples on a single MiSeq run. MDiGS is advantageous over other methods for CNV detection because pooled sample capture and hybridization to large contiguous BAC baits reduces sample and probe hybridization variability inherent in other methods. We performed MDiGS capture for three chromosomal regions consisting of ∼ 550 kb of coding and non-coding sequence with DNA from 253 patients with congenital lower limb disorders. PITX1 nonsense and HOXC11 S191F missense mutations were identified that segregate in clubfoot families. Using a novel pooled-capture reference strategy, we identified recurrent chromosome chr17q23.1q23.2 duplications and small HOXC 5' cluster deletions (51 kb and 12 kb). Given the current interest in coding and non-coding variants in human disease, MDiGS fulfills a niche for comprehensive and low-cost evaluation of CNVs, coding, and non-coding variants across candidate regions of interest.


Subject(s)
DNA Copy Number Variations , Genomics/methods , INDEL Mutation , Polymorphism, Single Nucleotide , Chromosomes, Artificial, Bacterial , Exome , Humans , Lower Extremity Deformities, Congenital/genetics , Sequence Analysis, DNA
11.
Am J Hum Genet ; 91(4): 685-93, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23040496

ABSTRACT

Motile cilia are essential components of the mucociliary escalator and are central to respiratory-tract host defenses. Abnormalities in these evolutionarily conserved organelles cause primary ciliary dyskinesia (PCD). Despite recent strides characterizing the ciliome and sensory ciliopathies through exploration of the phenotype-genotype associations in model organisms, the genetic bases of most cases of PCD remain elusive. We identified nine related subjects with PCD from geographically dispersed Amish communities and performed exome sequencing of two affected individuals and their unaffected parents. A single autosomal-recessive nonsynonymous missense mutation was identified in HEATR2, an uncharacterized gene that belongs to a family not previously associated with ciliary assembly or function. Airway epithelial cells isolated from PCD-affected individuals had markedly reduced HEATR2 levels, absent dynein arms, and loss of ciliary beating. MicroRNA-mediated silencing of the orthologous gene in Chlamydomonas reinhardtii resulted in absent outer dynein arms, reduced flagellar beat frequency, and decreased cell velocity. These findings were recapitulated by small hairpin RNA-mediated knockdown of HEATR2 in airway epithelial cells from unaffected donors. Moreover, immunohistochemistry studies in human airway epithelial cells showed that HEATR2 was localized to the cytoplasm and not in cilia, which suggests a role in either dynein arm transport or assembly. The identification of HEATR2 contributes to the growing number of genes associated with PCD identified in both individuals and model organisms and shows that exome sequencing in family studies facilitates the discovery of novel disease-causing gene mutations.


Subject(s)
Exome , Kartagener Syndrome/genetics , Mutation, Missense , Proteins/genetics , Adult , Axonemal Dyneins , Child , Chlamydomonas reinhardtii/genetics , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Epithelial Cells/metabolism , Female , Genes, Recessive , Genetic Predisposition to Disease , Humans , Infant , Kartagener Syndrome/metabolism , Male , Respiratory System/metabolism , Sequence Analysis, DNA/methods , Young Adult
12.
J Pediatr Hematol Oncol ; 37(2): e94-e101, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25333837

ABSTRACT

Single fraction total body irradiation (SFTBI) as part of a myeloablative preparative regimen in allogeneic hematopoietic stem cell transplantation (HSCT) for hematopoietic malignancies was shown to have similar survival compared with fractionated total body irradiation (FTBI)-containing regimens, with less acute toxicity. The objective of this study was to determine long-term toxicity >2 years following SFTBI-based HSCT. Twenty-one patients were evaluated at a median follow-up of 6.8 years. Thyroid dysfunction was found in 21% of patients, 1 of whom (5.2%) was symptomatic; 23% had gonadal failure; 50% of patients with growth potential had linear growth disturbance; 27% had mild to moderate pulmonary disease; and 25% had cataracts. Intelligence quotient was stable. cGVHD was present in 28%, and 4 patients (19%) were on immune suppression 2 years posttransplant. Overall survival subsequent to 2 years posttransplant was 76% in this cohort of patients. No secondary malignancies were observed. In conclusion, the toxicities of SFTBI occurred at similar or reduced frequency compared with FTBI. SFTBI should be considered for patients who may benefit from a radiation-containing HSCT preparative regimen.


Subject(s)
Cyclophosphamide/adverse effects , Graft vs Host Disease/etiology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Whole-Body Irradiation/adverse effects , Adolescent , Adult , Antineoplastic Agents, Alkylating/adverse effects , Child , Child, Preschool , Combined Modality Therapy , Female , Follow-Up Studies , Graft vs Host Disease/diagnosis , Graft vs Host Disease/mortality , Hematologic Neoplasms/complications , Hematologic Neoplasms/mortality , Humans , Infant , Male , Prognosis , Survival Rate , Transplantation Conditioning , Transplantation, Homologous , Young Adult
13.
J Pediatr ; 164(6): 1316-21.e3, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657120

ABSTRACT

OBJECTIVE: To determine whether synonymous variants in the adenosine triphosphate-binding cassette A3 transporter (ABCA3) gene increase the risk for neonatal respiratory distress syndrome (RDS) in term and late preterm infants of European and African descent. STUDY DESIGN: Using next-generation pooled sequencing of race-stratified DNA samples from infants of European and African descent at ≥34 weeks gestation with and without RDS (n = 503), we scanned all exons of ABCA3, validated each synonymous variant with an independent genotyping platform, and evaluated race-stratified disease risk associated with common synonymous variants and collapsed frequencies of rare synonymous variants. RESULTS: The synonymous ABCA3 variant frequency spectrum differs between infants of European descent and those of African descent. Using in silico prediction programs and statistical strategies, we found no potentially disruptive synonymous ABCA3 variants or evidence of selection pressure. Individual common synonymous variants and collapsed frequencies of rare synonymous variants did not increase disease risk in term and late-preterm infants of European or African descent. CONCLUSION: In contrast to rare, nonsynonymous ABCA3 mutations, synonymous ABCA3 variants do not increase the risk for neonatal RDS among term and late-preterm infants of European or African descent.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Variation , Infant, Premature , Respiratory Distress Syndrome, Newborn/genetics , Black People/genetics , Cohort Studies , Female , Humans , Incidence , Infant, Newborn , Male , Mutation , Prospective Studies , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/ethnology , Risk Assessment , Sensitivity and Specificity , White People/genetics
14.
Genome Res ; 20(12): 1711-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21041413

ABSTRACT

Pooled-DNA sequencing strategies enable fast, accurate, and cost-effect detection of rare variants, but current approaches are not able to accurately identify short insertions and deletions (indels), despite their pivotal role in genetic disease. Furthermore, the sensitivity and specificity of these methods depend on arbitrary, user-selected significance thresholds, whose optimal values change from experiment to experiment. Here, we present a combined experimental and computational strategy that combines a synthetically engineered DNA library inserted in each run and a new computational approach named SPLINTER that detects and quantifies short indels and substitutions in large pools. SPLINTER integrates information from the synthetic library to select the optimal significance thresholds for every experiment. We show that SPLINTER detects indels (up to 4 bp) and substitutions in large pools with high sensitivity and specificity, accurately quantifies variant frequency (r = 0.999), and compares favorably with existing algorithms for the analysis of pooled sequencing data. We applied our approach to analyze a cohort of 1152 individuals, identifying 48 variants and validating 14 of 14 (100%) predictions by individual genotyping. Thus, our strategy provides a novel and sensitive method that will speed the discovery of novel disease-causing rare variants.


Subject(s)
Computational Biology/methods , Gene Library , INDEL Mutation/genetics , Sequence Analysis, DNA/methods , Software , Gene Frequency , Genotype , Humans , Sensitivity and Specificity
15.
Cancer Med ; 12(6): 7234-7245, 2023 03.
Article in English | MEDLINE | ID: mdl-36479909

ABSTRACT

INTRODUCTION: The KMT2 family of genes is essential epigenetic regulators promoting gene expression. The gene family contains three subgroups, each with two paralogues: KMT2A and KMT2B; KMT2C and KMT2D; KMT2F and KMT2G. KMT2A-D are among the most frequent somatically altered genes in several different cancer types. Somatic KMT2A rearrangements are well-characterized in infant leukemia (IL), and growing evidence supports the role of additional family members (KMT2B, KMT2C, and KMT2D) in leukemogenesis. Enrichment of rare heterozygous frameshift variants in KMT2A and C has been reported in acute myeloid leukemia (AML), IL, and solid tumors. Currently, the non-synonymous variation, prevalence, and penetrance of these four genes are unknown. METHODS: This study determined the prevalence of pathogenic/likely pathogenic (P/LP) germline KMT2A-D variants in a cancer-free adult population from the Genome Aggregation Database (gnomAD). Two methods of variant interpretation were utilized: a manual genomic variant interpretation and an automated ACMG pipeline. RESULTS: The ACMG pipeline identified considerably fewer P/LP variants (n = 89) compared to the manual method (n = 660) in all 4 genes. Consequently, the total P/LP prevalence and allele frequency (AF) were higher in the manual method (1:112, AF = 4.46E-03) than in ACMG (1:832, AF = 6.01E-04). Multiple ancestry-exclusive P/LP variants were identified along with an increased frequency in males compared to females. Many of these variants identified in this population database are also associated with severe juvenile conditions. CONCLUSION: These data demonstrate that putatively functional germline variation in these developmentally important genes is more common than previously appreciated and identification in cancer-free adults may indicate incomplete penetrance for many of these variants. Future research should examine a genetic predisposing role in IL and other pediatric cancers.


Subject(s)
Leukemia, Myeloid, Acute , Male , Child , Infant , Female , Adult , Humans , Prevalence , Virulence , Gene Frequency , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Germ-Line Mutation
16.
Transplant Cell Ther ; 29(10): 640.e1-640.e8, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517612

ABSTRACT

Improved treatment options, such as reduced-intensity conditioning (RIC), enable older patients to receive potentially curative allogeneic hematopoietic cell transplantation (HCT). This progress has led to increased use of older HLA-matched sibling donors. An unintended potential risk associated with older donors is transplantation of donor cells with clonal hematopoiesis (CH) into patients. We aimed to determine the prevalence of CH in older HLA-matched sibling donors pretransplantation and to assess the clinical impact of donor-engrafted CH on HCT outcomes. This was an observational study using donor peripheral blood samples from the Center for International Blood and Marrow Transplant Research repository, linked with corresponding recipient outcomes. To explore engraftment efficiency and evolution of CH mutations following HCT, recipient follow-up samples available through the Bone Marrow Transplant Clinical Trials Network (Protocol 1202) were included. Older donors and patients (both ≥55 years) receiving first RIC HCT for myeloid malignancies were eligible. DNA from archived donor blood samples was used for targeted deep sequencing to identify CH. The associations between donor CH status and recipient outcomes, including acute graft-versus-host disease (aGVHD), chronic GVHD (cGVHD), overall survival, relapse, nonrelapse mortality, disease-free survival, composite GVHD-free and relapse-free survival, and cGVHD-free and relapse-free survival, were analyzed. A total of 299 donors were successfully sequenced to detect CH. At a variant allele frequency (VAF) ≥2%, there were 44 CH mutations in 13.7% (41 of 299) of HLA-matched sibling donors. CH mostly involved DNMT3A (n = 27; 61.4%) and TET2 (n= 9; 20.5%). Post-HCT samples from 13 recipients were also sequenced, of whom 7 had CH+ donors. All of the donor CH mutations (n = 7/7; 100%) were detected in recipients at day 56 or day 90 post-HCT. Overall, mutation VAFs remained relatively constant up to day 90 post-HCT (median change, .005; range, -.008 to .024). Doubling time analysis of recipient day 56 and day 90 data showed that donor-engrafted CH mutations initially expand then decrease to a stable VAF; germline mutations had longer doubling times than CH mutations. The cumulative incidence of grade II-IV aGVHD at day 100 was higher in HCT recipients with CH+ donors (37.5% versus 25.1%); however, the risk for aGVHD by donor CH status did not reach statistical significance (hazard ratio, 1.35; 95% confidence interval, .61 to 3.01; P = .47). There were no statistically significant differences in the cumulative incidence of cGVHD or any secondary outcomes by donor CH status. In subset analysis, the incidence of cGVHD was lower in recipients of grafts from DNMT3A CH+ donors versus donors without DNMT3A CH (34.4% versus 57%; P = .035). Donor cell leukemia was not reported in any donor-recipient pairs. CH in older HLA-matched sibling donors is relatively common and successfully engrafts and persists in recipients. In a homogenous population (myeloid malignancies, older donors and recipients, RICr, non-cyclophosphamide-containing GVHD prophylaxis), we did not detect a difference in cGVHD risk or other secondary outcomes by donor CH status. Subgroup analyses suggest potential differential effects by clinical characteristics and CH mutations. Larger prospective studies are needed to robustly determine which subsets of patients and CH mutations elicit meaningful impacts on clinical outcomes.

17.
BMC Genomics ; 13: 683, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23216810

ABSTRACT

BACKGROUND: Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. RESULTS: We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw reads against the entire genome using Novoalign followed by variant calling of non-indexed pools using SPLINTER or SAMtools for indexed samples. With these pipelines, we find sensitivity and specificity of 99.4% and 99.7% for pooled exome sequencing. Sensitivity, and to a lesser degree specificity, proved to be a function of coverage. For rare variants (≤2% minor allele frequency), we achieved sensitivity and specificity of ≥94.9% and ≥99.99% for custom capture of 2.5 Mb in multiplexed libraries of 22-48 individuals with only ≥5-fold coverage/chromosome, but these parameters improved to ≥98.7 and 100% with 20-fold coverage/chromosome. CONCLUSIONS: This highly scalable methodology enables accurate rare variant detection, with or without individual DNA sample indexing, while reducing the amount of required source DNA and total costs through less hybridization reagent consumption, multi-sample sonication in a standard PCR plate, multiplexed pre-enrichment pooling with a single hybridization and lesser sequencing coverage required to obtain high sensitivity.


Subject(s)
Algorithms , Exome , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Software , Alleles , Female , Gene Frequency , Gene Library , Genetic Testing/methods , Humans , Male , Nuclear Family , Sensitivity and Specificity , Sequence Alignment
18.
Hum Mol Genet ; 19(7): 1165-73, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20045868

ABSTRACT

Distal arthrogryposis type I (DA1) is a disorder characterized by congenital contractures of the hands and feet for which few genes have been identified. Here we describe a five-generation family with DA1 segregating as an autosomal dominant disorder with complete penetrance. Genome-wide linkage analysis using Affymetrix GeneChip Mapping 10K data from 12 affected members of this family revealed a multipoint LOD(max) of 3.27 on chromosome 12q. Sequencing of the slow-twitch skeletal muscle myosin binding protein C1 (MYBPC1), located within the linkage interval, revealed a missense mutation (c.706T>C) that segregated with disease in this family and causes a W236R amino acid substitution. A second MYBPC1 missense mutation was identified (c.2566T>C)(Y856H) in another family with DA1, accounting for an MYBPC1 mutation frequency of 13% (two of 15). Skeletal muscle biopsies from affected patients showed type I (slow-twitch) fibers were smaller than type II fibers. Expression of a green fluorescent protein (GFP)-tagged MYBPC1 construct containing WT and DA1 mutations in mouse skeletal muscle revealed robust sarcomeric localization. In contrast, a more diffuse localization was seen when non-fused GFP and MYBPC1 proteins containing corresponding MYBPC3 amino acid substitutions (R326Q, E334K) that cause hypertrophic cardiomyopathy were expressed. These findings reveal that the MYBPC1 is a novel gene responsible for DA1, though the mechanism of disease may differ from how some cardiac MYBPC3 mutations cause hypertrophic cardiomyopathy.


Subject(s)
Arthrogryposis/genetics , Carrier Proteins/genetics , Arthrogryposis/pathology , Base Sequence , Female , Genes, Dominant , Humans , Male , Molecular Sequence Data , Mutation, Missense
19.
Nat Methods ; 6(4): 263-5, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19252504

ABSTRACT

We report a targeted, cost-effective method to quantify rare single-nucleotide polymorphisms from pooled human genomic DNA using second-generation sequencing. We pooled DNA from 1,111 individuals and targeted four genes to identify rare germline variants. Our base-calling algorithm, SNPSeeker, derived from large deviation theory, detected single-nucleotide polymorphisms present at frequencies below the raw error rate of the sequencing platform.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA/genetics , Gene Frequency/genetics , Genetic Variation/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Base Sequence , Molecular Sequence Data , Reproducibility of Results , Sensitivity and Specificity , Sequence Alignment/methods , Software
20.
Epigenetics ; 17(2): 220-238, 2022.
Article in English | MEDLINE | ID: mdl-34304711

ABSTRACT

Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.


Subject(s)
Epigenesis, Genetic , Hemangioblasts , Animals , DNA Methylation , Epigenomics , Humans , Mammals , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL