Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Biol Macromol ; 267(Pt 1): 131217, 2024 May.
Article in English | MEDLINE | ID: mdl-38552683

ABSTRACT

Ultrasonic assisted acetic acid hydrolysis was applied to prepare starch nanocrystals (SNCs) from native starches with different crystalline structures (A, B, and C types). The structure properties, morphology, Pickering emulsion stability and curcumin deliver capacity of both SNCs and native starches were investigated and compared. Compared with native starches, SNCs showed smaller size and higher crystallinity. The size of SNCs varied with different crystalline types, with C-type starch exhibiting the smallest SNCs (107.4 nm), followed by A-type (113.8 nm), and B-type displaying the largest particle size (149.0 nm). SNCs-Pickering emulsion showed enhanced stability with smaller emulsion droplets, higher static stability, and denser oil/water interface. SNCs-Pickering emulsions displayed higher curcumin loading efficiency (53.53 %-61.41 %) compared with native starch-Pickering emulsions (13.93 %-19.73 %). During in vitro digestion, SNCs-Pickering emulsions proved to be more proficient in protecting and prolonging the biological activity of curcumin due to their smaller size and better interfacial properties. These findings demonstrated the potential of SNCs for application in Pickering emulsion and delivery of bioactive components.


Subject(s)
Acetic Acid , Curcumin , Emulsions , Nanoparticles , Starch , Curcumin/chemistry , Starch/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Acetic Acid/chemistry , Particle Size , Drug Stability , Hydrolysis , Crystallization , Ultrasonic Waves , Drug Carriers/chemistry
2.
Carbohydr Polym ; 342: 122419, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048244

ABSTRACT

To investigate the differences of nanocelluloses with various morphologies, ammonium persulphate (APS) oxidation, H3PO4 dissolution and regeneration, and ball milling combined with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as a medium were applied to isolate cellulose nanocrystals (MCNCs), cellulose nanospheres (MCNSs) and cellulose fibrils (MCNFs) from millet bran. The structure, properties, and formation mechanism of three nanocelluloses were comparatively investigated by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, atomic force microscope, scanning electronic microscope, and emulsifying ability evaluation. MCNCs had needle-like structures due to the removal of amorphous regions, MCNFs appeared fibrous structures due to swelling and mechanical force, and MCNSs displayed spherical structures through self-assembly. MCNCs and MCNFs were confirmed to exhibit cellulose I structures with crystallinities of 61.24 % and 50.09 %, respectively. MCNSs showed the highest crystallinity of 68.41 % with a cellulose II structure. MCNFs and MCNSs exhibited higher initial decomposition temperatures, while MCNCs showed the highest residual mass. MCNFs suspension showed the highest apparent viscosity, while MCNSs suspension demonstrated superior dispersion. MCNSs-emulsion displayed the smallest droplet size, and MCNFs-emulsion exhibited the highest viscosity. This study reveals the formation mechanisms and relationship between morphologies and properties of three millet bran nanocelluloses, providing a theoretical basis for their application.

3.
Food Res Int ; 191: 114706, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059959

ABSTRACT

Selenium (Se) biofortification during the growth process of mung bean is an effective method to improve the Se content and quality. However, the effect of Se biofortification on the physicochemical properties of mung bean protein is unclear. The objective of this study was to clarify the changes in the composition, Se forms, particle structure, functional properties, thermal stability, and gel properties of mung bean protein at four Se application levels. The results showed that the Se content of mung bean protein increased in a dose-dependent manner, with 7.96-fold (P1) and 8.52-fold (P2) enhancement at the highest concentration. Exogenous Se application promotes the conversion of inorganic Se to organic Se. Among them, selenomethionine (SeMet) and methyl selenocysteine (MeSeCys) replaced Met and Cys through the S metabolic pathway and became the dominant organic Se forms in Se-enriched mung bean protein, accounting for more than 80 % of the total Se content. Exogenous Se at 30 g/hm2 significantly up-regulated protein content and promoted the synthesis of sulfur-containing protein components and hydrophobic amino acids in the presence of increased levels of SeMet and MeSeCys. Meanwhile, Cys and Met substitution altered the sulfhydryl groups (SH), ß-sheets, and ß-turns of protein. The particle size and microstructural characteristics depend on the protein itself and were not affected by exogenous Se. The Se-induced increase in the content of hydrophobic amino acids and ß-sheets synergistically increases the thermal stability of the protein. Moderate Se application altered the functional properties of mung bean protein, which was mainly reflected in the significant increase in oil holding capacity (OHC) and foaming capacity (FC). In addition, the increase in SH and ß-sheets induced by exogenous Se could alter the protein intermolecular network, contributing to the increase in storage modulus (G') and loss modulus (G″), which resulted in the formation of more highly elastic gels. This study further promotes the application of mung bean protein in the field of food processing and provides a theoretical basis for the extensive development of Se-enriched mung bean protein.


Subject(s)
Plant Proteins , Rheology , Selenium , Selenomethionine , Vigna , Vigna/chemistry , Vigna/growth & development , Selenium/chemistry , Selenomethionine/chemistry , Plant Proteins/chemistry , Gels/chemistry , Selenocysteine/chemistry , Selenocysteine/analogs & derivatives , Biofortification , Hydrophobic and Hydrophilic Interactions , Hot Temperature , Food, Fortified/analysis
4.
Food Chem ; 443: 138463, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38280366

ABSTRACT

Germinated flaxseed (Linum usitatissimum L.) is an essential potential food ingredient, but the major energy substances (proteins, lipids, and carbohydrates) metabolites and metabolic pathways are unknown. Comprehensive metabolomic analyses were performed using Fourier transform infrared spectroscopy and high-performance liquid chromatography mass spectrometry on flaxseed from 0 to 7 d. Additionally, the critical metabolites pathways networks of three energy substances metabolites during flaxseed germination were exhibited. The results showed that arginine was the most active metabolite during germination, strongly associated with the arginine biosynthesis and arginine and proline metabolism pathways. Carbohydrates predominantly comprised sucrose on 0-3 d, which participated in galactose metabolism and starch and sucrose metabolism. The main flaxseed phospholipid molecules were phosphatidic acid, phosphatidylethanolamine, lysophosphatidic acid, and lysophosphatidylcholine during germination. This study underscores the paramount metabolic pathways in proteins, lipids and carbohydrates were arginine and proline metabolism, linoleic acid metabolism, arachidonic acid metabolism, and ascorbate and aldarate metabolism during germination.


Subject(s)
Flax , Flax/chemistry , Carbohydrates , Proteins , Metabolic Networks and Pathways , Sucrose , Arginine , Lipids , Proline
5.
Food Chem ; 439: 138134, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38064837

ABSTRACT

Ethanol-acid penetration and drying-heating treatment was developed to shorten the preparation time and improve the quality of starch nanocrystals (SNCs). After treatment by optimized parameters, including 40 % ethanol solution, 10.6 mM chloric acid, and heating time of 1.5 h or 2.0 h, the starches exhibited weakened internal structure and relatively complete crystalline structure. Compared with the regular preparation of only acid hydrolysis, the regular final yield (8.5 % after 5 days) was reached in 48 h and 12 h of the starch heated at 1.5 h and 2.0 h, respectively. The micromorphology, molecular weight, and crystalline structure evaluation demonstrated that the collected nanoparticles were indeed SNCs with smaller size and higher relative crystallinity than regular SNCs. Further analysis found that the SNCs had better crystalline lamellae, higher thermal stability, and lower proportion of phosphorus and sulfur atoms than regular SNCs. This provided a potential method for the high-efficiency preparation of SNCs.


Subject(s)
Nanoparticles , Starch , Starch/chemistry , Ethanol , Heating , Particle Size , Acids , Nanoparticles/chemistry
6.
Food Chem X ; 22: 101441, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38756471

ABSTRACT

This study aimed to investigate the effects of germination and roasting on the flavor of quinoa. Firstly, the aroma of quinoa and germinated quinoa roasted under different conditions was analyzed using sensory evaluation and electronic nose (E-nose). Results showed that the best favorable aroma of quinoa and germinated quinoa was obtained when roasted at 160 °C for 15 min. Then, a total of 34 and 80 volatile organic compounds (VOCs) of quinoa and germinated quinoa roasted at 160 °C for 15 min were determined using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Germination and roasting effectively reduced the contents of VOCs that produced undesirable flavor. Moreover, germination improved the floral aromas, while roasting mainly produced caramel, cocoa, and roasted nut aromas of quinoa. This study indicated that germination and roasting treatments might serve as promising processing methods to improve the flavor of quinoa.

7.
Int J Biol Macromol ; 270(Pt 2): 132496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763247

ABSTRACT

This study investigated the effects of Lactobacillus plantarum fermentation on the structural, physicochemical, and digestive properties of foxtail millet starches. The fermented starch granules formed a structure with honeycomb-like dents, uneven pores, and reduced particle size. As the fermentation time extended, the amylose content of waxy (0.88 %) and non-waxy (33.71 %) foxtail millet starches decreased to the minimum value at 24 h (0.59 % and 29.19 %, respectively), and then increased to 0.85 % and 31.87 % at 72 h, respectively. Both native and fermented foxtail millet starches exhibited an A-type crystal structure. Compared with native samples, the fermented samples performed enhanced proportion of short-branched chain, crystallinity, and short-range ordered degree. After fermentation for 24 h, the solubility, adsorption capacity, and pasting viscosity of foxtail millet starches improved, whereas the swelling power, pasting temperature, breakdown, setback, and degree of retrogradation reduced. Additionally, fermentation increased the transition temperatures, enthalpy, and digestibility. Overall, Lactobacillus plantarum fermentation is considered a competent choice to regulate the characteristics of foxtail millet starch.


Subject(s)
Digestion , Fermentation , Food Microbiology , Lactobacillus plantarum , Starch , Lactobacillus plantarum/metabolism , Starch/chemistry , Starch/metabolism , Starch/ultrastructure , Particle Size , Amylose/analysis , Crystallography, X-Ray
8.
J Agric Food Chem ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166383

ABSTRACT

This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1ß, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.

9.
Foods ; 12(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36900633

ABSTRACT

The physicochemical, structural and functional properties of proso millet protein from waxy and non-waxy proso millet were investigated. The secondary structures of proso millet proteins consisted mainly of a ß-sheet and ɑ-helix. The two diffraction peaks of proso millet protein appeared at around 9° and 20°. The solubility of non-waxy proso millet protein was higher than that of waxy proso millet protein at different pH values. Non-waxy proso millet protein had a relatively better emulsion stability index (ESI), whereas waxy proso millet protein had a better emulsification activity index (EAI). Non-waxy proso millet protein showed a higher maximum denaturation temperature (Td) and enthalpy change (ΔH) than its waxy counterpart, indicating a more ordered conformation. Waxy proso millet exhibited higher surface hydrophobicity and oil absorption capacity (OAC) than non-waxy proso millet, suggesting that the former may have potential applications as a functional ingredient in the food industry. There was no significant difference in the intrinsic fluorescence spectra of different waxy and non-waxy proso millet proteins at pH 7.0.

10.
Food Chem ; 412: 135536, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36708668

ABSTRACT

Starch nanocrystals (SNCs) were prepared from waxy rice starch via sulfuric acid hydrolysis. The objective focused on the following: i) the hydrolysis kinetics and structural properties of SNCs; ii) the effects of differential centrifugation on the yield and size distribution of SNCs. The hydrolysis was divided into a rapid hydrolysis stage in the initial two days and a slow hydrolysis stage after two days. During the two-day hydrolysis, the average diameter of SNCs reached 244 nm. After two days of hydrolysis, the degree of crystallinity, crystallite size, and melting temperature and enthalpy increased. The proportion of A-branched chains decreased, whereas the proportion of B1-branched chains and molecular weight did not change considerably. Thus, the reaction in the slow hydrolysis stage could be considered as the surface modification and gradual release of SNCs. Furthermore, SNCs with a small size and high charge density could be used for differential centrifugation.


Subject(s)
Nanoparticles , Oryza , Starch/chemistry , Particle Size , Amylopectin , Hydrolysis , Nanoparticles/chemistry , Centrifugation
11.
RSC Adv ; 13(5): 3306-3316, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756417

ABSTRACT

This study investigated the effects of germination pretreatment on the physicochemical properties, lipid concomitants, and antioxidant activity of flaxseed oil in three varieties. The results indicated that the oil content of flaxseed decreased by 2.29-7.40% during the 5 days germination period. Germinated flaxseed oil showed a significantly higher acid value and lower peroxide value. The unsaturated fatty acid content was slightly increased by germination. Germination pretreatment resulted in significant increases in the α-tocopherol, stigmasterol, pigments, total phenols, and antioxidant activity. As germination time progressed to 5 days, α-tocopherol which was traditionally recognized as having the highest antioxidant activity form of vitamin E in humans increased from 3.07-6.82 mg kg-1 to 258.11-389.78 mg kg-1. Germinated oil had 1.63 to 2.05 times higher stigmasterol content than non-germinated oil. The chlorophyll and carotenoid also increased exponentially. The total phenol content of flaxseed oil increased from 64.29-75.85 mg kg-1 to 236.30-297.78 mg kg-1. Germinated flaxseed oil showed important antioxidant activity. Compared with other varieties during germination, the oil from Gansu showed a higher level of α-linolenic acid, tocopherols, and carotenoid, and a maximum increase level of tocopherols and phytosterols. The comprehensive evaluation of germination time by correlation and principal component analysis showed that when germination time exceeded 2 days, the lipid concomitants and antioxidant capacity of flaxseed oil were significantly improved.

12.
Int J Biol Macromol ; 235: 123735, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36806775

ABSTRACT

Starch nanoparticles (SNPs) were produced by nanoprecipitation combined with ultrasonication with the use of different starches (corn, potato and sago starch) and used to stabilize Pickering emulsions. The orthogonal experiment was used to optimize preparation conditions of gelatinization pretreatment duration of 30 min, ultrasonic power of 600 W, and ultrasonic time of 40 min. Compared with native starch, the SNPs were spherical in shape and displayed a V-type crystalline structure with low relative crystallinity and higher degree of double-helix. Compared with native starch-Pickering emulsion, the SNP-Pickering emulsion had a smaller droplet size, more uniform distribution, clearer oil/water interface, and higher static stability of droplets. The sago SNP-Pickering emulsion had the great gelatinous structure and emulsion stability. In addition, the SNP-Pickering emulsion had the better loading efficiency and controlled release performance of curcumin. Meanwhile, the bioavailability of curcumin in sago SNP-Pickering emulsion was highest.


Subject(s)
Curcumin , Nanoparticles , Emulsions/chemistry , Starch/chemistry , Nanoparticles/chemistry , Edible Grain , Particle Size
13.
Food Chem X ; 19: 100784, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780251

ABSTRACT

This study investigated the structure and quality characteristics of hard and crispy parched rice obtained from raw proso millet through steaming, roasting, and milling. Results showed that thermal treatment disrupted the structure of samples and transformed the crystal from A-type in raw proso to V-type in parched rice. Rheological and thermodynamic analyses revealed that thermal treatment reduced the stability of parched rice. Gelatinization tests demonstrated that the parched rice was easier to gelatinize and had a lower viscosity. The digestibility of hard parched rice and crispy parched rice improved, with rapidly digestible starch content increasing by 73.62% and 76.95%, respectively, compared with that of raw proso millet. Headspace solid-phase microextraction/gas chromatography-mass spectrometry results further indicated that thermal treatment enhanced the flavor substances of parched rice. These findings demonstrated the unique properties of parched rice and supported its production and processing as a whole grain.

14.
Int J Biol Macromol ; 253(Pt 1): 126604, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37652338

ABSTRACT

To prevent starch nanocrystals (SNCs) that are generated at an early stage from being hydrolyzed excessively, this study proposed a new separation method, named "neutral dispersion and acidic precipitation." SNCs were prepared from waxy potato starch by sulfuric acid hydrolysis. Based on the results of kinetics and molecular weight, the hydrolysis was divided into three stages, e.g., rapid (initial 1 day), medium (subsequent 1 day) and slow stage (2-5 days). The rapid and medium stages were related to the degradation of amorphous region in starch, and the slow stage mainly referred to SNC release. Therefore, the method was developed to separate SNCs at the slow stage. After centrifugation at 6000 rpm, large particles were removed from the SNC suspension under pH 7. The SNCs with small average size and crystallite size, high relative crystallinity (RC), and high dispersion stability in the supernatant were retained and were then precipitated entirely under pH 5, because pH 5 led to the reduction of dispersion stability of SNCs. Meanwhile, the hydrothermal and dry-thermal stability of separated SNCs were significantly promoted. The separation method has the potential in SNC preparation for increasing the yield and collecting products with small size and high RC.


Subject(s)
Nanoparticles , Starch , Starch/chemistry , Hydrolysis , Particle Size , Acids , Nanoparticles/chemistry , Amylopectin
15.
Int J Biol Macromol ; 224: 594-603, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36270398

ABSTRACT

The structural, physicochemical, gel textural, rheological, and in vitro digestibility properties as well as their relationships of non-waxy proso millet starch (NPMS) and waxy proso millet starch (WPMS) were evaluated by taking normal corn starch (CS) and potato starch (PS) as controls. Proso millet starch was mostly polygonal or spherical, with an A-type crystalline structure. Proso millet starch contained more short-branched chains (DP 6-24) compared with CS and PS. WPMS possessed higher crystallinity and more short-range ordered structures than NPMS. NPMS displayed higher pasting temperature, retrogradation rate and shear thinning degree, and lower gelatinization temperature and enthalpy than WPMS. The hardness and chewiness of starch gel formed by NPMS were higher than those of WPMS. All starch samples exhibited shear thinning behavior in the steady-flow test and typical elastic solid behavior in the dynamic rheological test. Moreover, NPMS was considered a potential formula for functional foods, with its lower rapidly digestible starch (RDS) and higher resistant starch (RS) contents than WPMS, CS, and PS. This paper revealed the influence of amylose content and structure on the physicochemical properties of different proso millet starch.


Subject(s)
Panicum , Panicum/chemistry , Amylopectin/chemistry , Starch/chemistry , Amylose/chemistry , Temperature
16.
Food Chem ; 427: 136697, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37379746

ABSTRACT

Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation had a uniform particle size of 191.20 nm. QSNPs with amorphous crystalline structure had greater contact angle than QS with orthorhombic crystalline structure, which can therefore be utilized to stabilize Pickering emulsions. QSNPs-based Pickering emulsions prepared by suitable formulations (QSNPs concentration of 2.0-2.5 %, oil volume fraction of 0.33-0.67) exhibited good stability against pH of 3-9 and ionic strength of 0-200 mM. The oxidative stability of the emulsions increased with increasing starch concentration and ionic strength. Microstructural and rheological results indicated that the structure of the starch interfacial film and the thickening effect of the water phase affected the emulsion stability. The emulsion had excellent freeze-thaw stability and can be produced as a re-dispersible dry emulsion using the freeze-drying technique. These results implied that the QSNPs had great potential for application in the preparation of Pickering emulsions.


Subject(s)
Chenopodium quinoa , Nanoparticles , Emulsions/chemistry , Starch/chemistry , Chenopodium quinoa/chemistry , Nanoparticles/chemistry , Excipients , Water/chemistry , Particle Size
17.
Food Chem X ; 18: 100689, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37151211

ABSTRACT

The structural, functional properties of protein isolated from small-seeded soybeans were investigated and characteristics of tofu were studied. Small-seeded soybean protein had obvious α', α, ß, acidic and basic subunits bands and two endothermic peaks (76.02-76.63℃ and 91.94-94.25℃). Small-seeded black soybean protein isolates (SBSPI) had more ß-sheet (31.90-33.54%) structure, while small-seeded yellow soybean protein isolates (SYSPI) had more α-helix (18.89-20.72%) structure. SYSPI had higher fluorescence intensity (839.10-847.80) than SBSPI (482.70-565.10). SBSPI exhibited higher surface hydrophobicity (939.51-1252.75) and water absorption capacity (8.07-8.50 g/g). Tofu made from small-seeded yellow soybeans had higher yield (549.46-560.23 g/100 g soybean) and was brighter (L*, 74.61-77.48) and more yellowish (b*, 14.83-14.95) in color. Tofu made from Fugu small-seeded black soybean (FGSBS) had the highest hardness (178.52 g), adhesiveness (-25.77 g.sec), chewiness (87.45 g) and resilience (0.26), signifying a more compact structure.

18.
J Proteome Res ; 11(9): 4465-75, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22856334

ABSTRACT

Bacteria utilize a quorum sensing (QS) system to coordinate gene expression by monitoring the concentration of molecules known as autoinducers (AI). In the present study, we confirmed the presence of a LuxS/AI-2 dependent QS system in vancomycin-resistant Enterococcus faecalis V583. Then, the cellular targets controlled by AI-2 were identified by comparative proteomics analysis in order to elucidate the possible role of AI-2 in E. faecalis. Results demonstrated 15 proteins that are differentially expressed upon the addition of AI-2, including proteins involved in metabolism, translation, energy production and/or conversion, and cell wall biogenesis. Glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase associated with carbohydrate metabolism and energy production were up-regulated upon inducing by AI-2. In addition, externally added AI-2 could down-regulate acetyl-coenzyme A carboxylase and ornithine carbamoyltransferase, two key enzyme involved in metabolism. All these data suggest that AI-2 signaling may play a role in the regulation of a number of important metabolic properties of E. faecali. We further investigated the role of AI-2 in biofilm formation by E. faecalis, showing the addition of AI-2 to E. faecalis V583 cultures resulted in increased biofilm formation. Our results provide important clues to the role of a LuxS/AI-2 dependent QS system in vancomycin-resistant E. faecalis.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Sulfur Lyases/metabolism , Enterococcus faecalis/physiology , Homoserine/analogs & derivatives , Quorum Sensing/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biofilms , Carbon-Sulfur Lyases/genetics , Electrophoresis, Gel, Two-Dimensional , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Gene Expression Profiling , Homoserine/genetics , Homoserine/metabolism , Homoserine/physiology , Lactones/metabolism , Metabolic Networks and Pathways/genetics , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , Proteomics , Quorum Sensing/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429288

ABSTRACT

The objective of this study was to investigate the soluble epoxide hydrolase (sEH) inhibitory properties of corn gluten peptides. In total, 400 dipeptides and 8000 tripeptides were first virtually screened by molecular docking and 30 potential sEH inhibitory peptides were selected. Among them, WEY, WWY, WYW, YFW, and YFY showed the highest sEH inhibitory activities with IC50 values of 55.41 ± 1.55, 68.80 ± 7.72, 70.66 ± 9.90, 96.00 ± 7.5, and 94.06 ± 12.86 µM, respectively. These five peptides all behaved as mixed-type inhibitors and were predicted to form hydrogen bond interactions mainly with Asp333, a key residue located in the catalytic active site of sEH. Moreover, it was found that the corn gluten hydrolysates of Alcalase, Flavourzyme, pepsin and pancreatin all exhibited high sEH inhibitory activities, with IC50 values of 1.07 ± 0.08, 1.19 ± 0.24, and 1.46 ± 0.31 mg/mL, respectively. In addition, the sEH inhibitory peptides WYW, YFW, and YFY were successfully identified from the corn gluten hydrolysates by Alcalase using nano-LC-MS/MS. This study demonstrated the sEH inhibitory capacity of peptides for the first time and corn gluten might be a promising food protein source for discovering novel natural sEH inhibitory peptides.

20.
RSC Adv ; 12(15): 8987-8995, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424844

ABSTRACT

This study aimed to investigate the effect of water content on the properties and structure of oleogels by developing walnut oleogel based on potato starch and candelilla wax (CW). Physical, thermal, rheological and microstructure characteristics of the walnut oleogel were determined by texture analyzer, differential scanning calorimeter, rotary rheometer, X-ray diffractometer and optical microscope. Results showed that with increased water content, the hardness of the oleogel increased from 123.35 g to 158 g, whereas the oil loss rate decreased from 24.64% to 10.91%. However, these two values decreased slightly when the ratio of oil to water was 1 : 1. The prepared oleogels have a high elastic modulus, and the flow behavior of all walnut oleogels conformed to that of a non-flowing fluid. Microstructure observation indicated that the crystal size and quantity increased with an increase in water content, and the liquid oil was wrapped in the crystal network by CW and potato starch, forming solidified droplets to further promote gelation. In conclusion, when the ratio of oil to water is 39%, the oleogel has good physical properties and stable crystal structure. These findings can provide an indication of water content in the composition of oleogels.

SELECTION OF CITATIONS
SEARCH DETAIL