Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 63(14): 6192-6201, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38518256

ABSTRACT

Fe2O3 is a promising semiconductor for photoelectrochemical (PEC) water decomposition. However, severe charge recombination problems limit its applications. In this study, a F-Fe2O3-x/MoS2 nanorod array photoanode was designed and prepared to facilitate charge separation. Detailed characterization and experimental results showed that F doping in Fe2O3 regulated the electronic structure to improve the conductivity of Fe2O3 and induced abundant oxygen vacancies to increase the carrier concentration and promote charge separation in bulk. In addition, the internal electric field between F-Fe2O3-x and MoS2 facilitated the qualitative transfer of the photogenerated charge, thus inhibiting their recombination. The synergistic effect between the oxygen vacancy and F-Fe2O3-x/MoS2 heterojunction significantly enhanced the PEC performance of Fe2O3. This study provides a universal strategy for designing other photoanode materials with high-efficiency charge separation.

2.
Parasitol Res ; 122(7): 1557-1565, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37148368

ABSTRACT

Adenylate kinases (ADKs) are one of the important enzymes regulating adenosine triphosphate (ATP) metabolism in Echinococcus granulosus sensu lato. The objective of the present study was to explore the molecular characteristics and immunological properties of E. granulosus sensu stricto (G1) adenylate kinase 1 (EgADK1) and adenylate kinase 8 (EgADK8). EgADK1 and EgADK8 were cloned and expressed, and the molecular characteristics of EgADK1 and EgADK8 were analyzed through different bioinformatics tools. Western blotting was used to examine the reactogenicity of recombinant adenylate kinase 1 (rEgADK1) and recombinant adenylate kinase 8 (rEgADK8) and to evaluate their diagnostic value. The expression profiles of EgADK1 and EgADK8 in 18-day-old strobilated worms and protoscoleces were analyzed by quantitative real-time PCR, and their distribution in 18-day-old strobilated worms, the germinal layer, and protoscoleces was determined by immunofluorescence localization. EgADK1 and EgADK8 were successfully cloned and expressed. Bioinformatics analysis predicted that EgADK1 and EgADK8 have multiple phosphorylation sites and B-cell epitopes. Compared with EgADK8, EgADK1 and other parasite ADKs have higher sequence similarity. In addition, both cystic echinococcosis (CE)-positive sheep sera and Cysticercus tenuicollis-infected goat sera could recognize rEgADK1 and rEgADK8. EgADK1 and EgADK8 were localized in protoscoleces, the germinal layer, and 18-day-old strobilated worms. EgADK1 and EgADK8 showed no significant difference in their transcription level in 18-day-old strobilated worms and protoscoleces, suggesting that EgADK1 and EgADK8 may play an important role in the growth and development of E. granulosus sensu lato. Since EgADK1 and EgADK8 can be recognized by other parasite-positive sera, they are not suitable as candidate antigens for the diagnosis of CE.


Subject(s)
Echinococcosis , Echinococcus granulosus , Animals , Sheep , Echinococcus granulosus/genetics , Adenylate Kinase , Genotype , Echinococcosis/parasitology , Real-Time Polymerase Chain Reaction , Goats/parasitology
3.
Transbound Emerg Dis ; 69(5): e1382-e1392, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35139582

ABSTRACT

Cystic echinococcosis (CE) is a neglected tropical zoonosis caused by Echinococcus granulosus sensu lato (s.l.) and remains a major public health concern globally. Here, CE isolates (n = 3310) with clearly defined genotypes and geographical origins in China were retrieved through our epidemiological survey (2016-2020) and systematic review (1992-2020). Existing known genotypes of Echinococcus granulosus sensu lato (E. granulosus s.l.) except for G4 have been found in China, particularly on the Tibetan Plateau, where their genetic diversity is unique to that part of the world. According to the systematic review, genetic compositions of E. granulosus s.l. in China were as follows: E. granulosus (G1, G3), 98.3%; Echinococcus ortleppi (G5), 0.1%; Echinococcus intermedius (G6, G7), 1.4%; and Echinococcus canadensis (G8, G10), 0.2%. Specifically, G1 was responsible for 97.7% of infections and characterized by the broadest host ranges and geographic distributions. Our epidemiological results showed a relatively stable genetic composition of E. granulosus s.l. in sheep and yaks from three CE hyperendemic provinces (Xinjiang, Sichuan, Qinghai). A higher proportion of fertile cysts were found in sheep (287/406, 70.7%) than in yaks (28/184, 15.2%). During the past 29 years, 51 cox1 haplotypes of E. granulosus s.l. were endemic in China. The ancestral haplotype (Hap_2) remained the most common haplotype, 12 relatively common haplotypes were endemic and nine newly reported haplotypes were found during the survey. Overall, our results demonstrate that the compulsory immunization of sheep and the pilot EG95 vaccination campaign in yaks are well matched with the current genotypic situation. In addition to yaks, we advocate for more surveillance of CE isolates from pigs, cattle, goats and camels, since their roles in the transmission and reservation of E. granulosus s.l. have been largely ignored in China.


Subject(s)
Cattle Diseases , Echinococcosis , Echinococcus granulosus , Echinococcus , Goat Diseases , Sheep Diseases , Swine Diseases , Animals , Camelus , Cattle , Cattle Diseases/epidemiology , China/epidemiology , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcus/genetics , Echinococcus granulosus/genetics , Genetic Variation , Genotype , Goats , Sheep , Sheep Diseases/epidemiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL