Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32970990

ABSTRACT

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Cryoelectron Microscopy , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Lung/pathology , Male , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
2.
Cell ; 182(1): 73-84.e16, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32425270

ABSTRACT

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Single-Cell Analysis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , COVID-19 , Convalescence , High-Throughput Nucleotide Sequencing , Humans , Mice , Pandemics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , VDJ Exons
3.
Immunity ; 48(4): 675-687.e7, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29653696

ABSTRACT

Manganese (Mn) is essential for many physiological processes, but its functions in innate immunity remain undefined. Here, we found that Mn2+ was required for the host defense against DNA viruses by increasing the sensitivity of the DNA sensor cGAS and its downstream adaptor protein STING. Mn2+ was released from membrane-enclosed organelles upon viral infection and accumulated in the cytosol where it bound directly to cGAS. Mn2+ enhanced the sensitivity of cGAS to double-stranded DNA (dsDNA) and its enzymatic activity, enabling cGAS to produce secondary messenger cGAMP in the presence of low concentrations of dsDNA that would otherwise be non-stimulatory. Mn2+ also enhanced STING activity by augmenting cGAMP-STING binding affinity. Mn-deficient mice showed diminished cytokine production and were more vulnerable to DNA viruses, and Mn-deficient STING-deficient mice showed no increased susceptibility. These findings indicate that Mn is critically involved and required for the host defense against DNA viruses.


Subject(s)
DNA Virus Infections/immunology , DNA Viruses/immunology , DNA, Viral/immunology , Manganese/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Adult , Animals , Cell Line , Cricetinae , Enzyme Activation/immunology , Female , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Immunity, Innate/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Young Adult
4.
J Neurosci Res ; 102(1): e25293, 2024 01.
Article in English | MEDLINE | ID: mdl-38284838

ABSTRACT

Neurovascular coupling (NVC) provides new insights into migraine, a neurological disorder impacting over one billion people worldwide. This study compared NVC and cerebral blood flow (CBF) in patients with migraine without aura (MwoA) and healthy controls. About 55 MwoA patients in the interictal phase and 40 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging and arterial spin-labeling perfusion imaging scans. The CBF and resting-state neuronal activity indicators, including the amplitudes of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC), were calculated for each participant. The global and regional NVCs were assessed using cross-voxel CBF-neuronal activity correlations and CBF/neuronal activity ratios. Patients with MwoA showed increased CBF/ALFF ratios in the left media, superior and inferior frontal gyri, and anterior cingulate gyrus, increased CBF/DC ratios in the left middle and inferior frontal gyri, and increased CBF/ReHo ratios in the right corpus callosum and right posterior cingulate gyrus. Lower CBF/ALFF ratios in the right rectal gyrus, the left orbital gyrus, the right inferior frontal gyrus, and the right superior temporal gyrus were also found in the MwoA patients. Furthermore, the CBF/ALFF ratios in the inferior frontal and superior temporal gyri were positively correlated with the Headache Impact Test scores and Hamilton anxiety scale scores in the MwoA patients. These findings provide evidence for the theory that abnormal NVC contributes to MwoA.


Subject(s)
Migraine without Aura , Neurovascular Coupling , Humans , Migraine without Aura/diagnostic imaging , Cerebrovascular Circulation , Frontal Lobe , Corpus Callosum
5.
Plant Biotechnol J ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548388

ABSTRACT

Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome-wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone-9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.

6.
Anal Biochem ; 687: 115427, 2024 04.
Article in English | MEDLINE | ID: mdl-38123110

ABSTRACT

In practical applications, analytical instruments are used for both qualitative and quantitative analysis. However, for high-field asymmetric-waveform ion mobility spectrometry (FAIMS), most studies to date have been focused on the qualitative analysis of substances, with limited research on quantitative analysis. Explored here is the feasibility of using deep learning in FAIMS for quantitative analysis, aided by redesigning the FAIMS upper computer. Integrating spectrum creation and deep learning analysis into the FAIMS upper computer boosts the processing and analysis of FAIMS data, laying a foundation for applying FAIMS practically. For analysis using image processing, multiple FAIMS spectral lines obtained under different conditions are converted into a three-dimensional thermodynamic map known as a FAIMS spectrum, and multiple FAIMS spectrum are preprocessed to obtain the data set of this experiment. The principles of partial-least-squares regression and the XGBoost and ResNeXt models are introduced in detail, and the data are analyzed using these models, while exploring the effects of different model parameters and determining their optimal values. The experimental results show that the pre-trained ResNeXt deep learning model performs the best on the test set, with a root mean square error of 0.86 mg/mL, indicating the potential of deep learning in realizing quantitative analysis of substances in FAIMS.


Subject(s)
Deep Learning , Ion Mobility Spectrometry , Ion Mobility Spectrometry/methods , Acetone
7.
Rapid Commun Mass Spectrom ; 38(5): e9699, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38355881

ABSTRACT

RATIONALE: During the detection of volatile organic compounds (VOC) using high-field asymmetric waveform ion mobility spectrometry (FAIMS), the ambient temperature significantly impacts the accuracy of planar FAIMS. To mitigate the influence of ambient temperature on detection accuracy and enhance resolution, a FAIMS system based on the inner impedance characteristics of a printed circuit board (PCB) was designed for temperature control. METHODS: This study, conducted under standard atmospheric pressure, aimed to assess the signal stability of a planar FAIMS instrument with and without temperature control, and the effect of temperature change on the detection ability of acetone, ethanol, and their mixture was studied using PCB self-heating. RESULTS: Experimental results demonstrated that the base noise in FAIMS with temperature control was 0.2 pA, whereas that in FAIMS without temperature control was 1.8 pA. Notably, with increasing temperature, the detection ability of FAIMS changes accordingly. The optimal relative detection ability of acetone was observed when the electrode plate was heated to 45°C under an electric field of 15 kV/cm. CONCLUSIONS: This study provides a novel approach to improve the resolving power of FAIMS systems and their signal-to-noise ratio. The utilization of a PCB-based temperature control proved effective in stabilizing FAIMS signal characteristics and optimizing detection capabilities, particularly for VOCs such as acetone. These findings have significant implications for improving the accuracy and resolving power of FAIMS systems in VOC detection applications.

8.
Cerebellum ; 22(5): 840-851, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35986875

ABSTRACT

Somatic symp tom disorders (SSDs) are a group of psychiatric disorders characterized by persistent disproportionate concern and obsessive behaviors regarding physical conditions. Currently, SSDs lack effective treatments and their pathophysiology is unclear. In this paper, we aimed to examine microstructural abnormalities in the brains of patients with SSD using diffusion kurtosis imaging (DKI) and to investigate the correlation between these abnormalities and clinical indicators. Diffusion kurtosis images were acquired from 30 patients with SSD and 30 healthy controls (HCs). Whole-brain maps of multiple diffusion measures, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK), were calculated. To analyze differences between the two groups, nonparametric permutation testing with 10,000 randomized permutations and threshold-free cluster enhancement was used with family-wise error-corrected p values < 0.05 as the threshold for statistical significance. Then, the correlations between significant changes in these diffusion measures and clinical factors were examined. Compared to HCs, patients with SSD had significantly higher FA, MK, and RK and significantly lower MD and RD in the cerebellum, thalamus, basal ganglia, and limbic cortex. The FA in the left caudate and the pontine crossing tract were negatively correlated with disease duration; the MD and the RD in the genu of the corpus callosum were positively correlated with disease duration. Our findings highlight the role of the cerebellum-thalamus-basal ganglia-limbic cortex pathway, especially the cerebellum, in SSDs and enhance our understanding of the pathogenesis of SSDs.


Subject(s)
Medically Unexplained Symptoms , Mental Disorders , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Cerebellum/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Basal Ganglia/diagnostic imaging
9.
Headache ; 63(8): 1119-1127, 2023 09.
Article in English | MEDLINE | ID: mdl-37548006

ABSTRACT

BACKGROUND: The trigeminal vascular system is an important part of the anatomical and physiological basis of migraine. The effective connectivity (EC) among the regions of interest (ROIs) in the trigeminal vascular system involved in migraine without aura (MWoA) remains unclear. METHODS: In this cross-sectional study, 48 patients (mean [SD] age 38.06 [10.35] years; male, 14/48 [29%]) with MWoA during the interictal phase and 48 healthy controls of similar age and sex (mean [SD] age 38.96 [10.96] years; male, 14/48 [29%]) underwent resting-state functional magnetic resonance imaging (fMRI). Dynamic causal modeling analysis was conducted to investigate directional EC among ROIs in the trigeminal vascular system including the bilateral brainstem, the primary somatosensory cortex (S1), the thalamus, and the insula. RESULTS: Compared with the healthy control group, MWoA represented significantly reduced EC from the left brainstem (Brainstem.L) to the left insula (MWoA: mean [SD] -0.16 [0.36]; healthy controls: mean [SD] 0.11 [0.41]; Pcorrected = 0.021), reduced EC from the Brainstem.L to the right insula (MWoA: mean [SD] -0.15 [0.39]; healthy controls: mean [SD] 0.03 [0.35]; Pcorrected = 0.021), and decreased EC from the left thalamus (Thalamus.L) to the Brainstem.L (MWoA: mean [SD] -0.13 [0.56]; healthy controls: mean [SD] 0.10 [0.45]; Pcorrected = 0.021). Altered EC parameters were not significantly correlated with MWoA clinical data. CONCLUSION: These results further provide increasing evidence that disturbed homeostasis of the trigeminovascular nociceptive pathway is involved in the pathophysiological mechanisms of migraine. Patients with MWoA exhibited a regional interaction distinct from healthy controls in the neural pathway of the Bilateral Insula-Brainstem.L-Thalamus.L, which may shed light on the future understanding of brain mechanisms for MWoA. Future brain-based interventions are suggested to consider the dysregulation in the Bilateral Insula-Brainstem.L-Thalamus.L circuits.


Subject(s)
Migraine without Aura , Humans , Male , Adult , Migraine without Aura/diagnostic imaging , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Brain , Brain Stem/diagnostic imaging
10.
BMC Infect Dis ; 23(1): 305, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158819

ABSTRACT

BACKGROUND: Although there is increasing understanding of the changes in the laboratory parameters of Coronavirus disease 2019 (COVID-19), the correlation between circulating Mid-regional Proadrenomedullin (MR-proADM) and mortality of patients with COVID-19 is not fully understood. In this study, we conducted a systematic review and meta-analysis to evaluate the prognostic value of MR-proADM in patients with COVID-19. METHODS: The PubMed, Embase, Web of Science, Cochrane Library, Wanfang, SinoMed and Chinese National Knowledge Infrastructure (CNKI) databases were searched from 1 January 2020 to 20 March 2022 for relevant literature. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess quality bias, STATA was employed to pool the effect size by a random effects model, and potential publication bias and sensitivity analyses were performed. RESULTS: 14 studies comprising 1822 patients with COVID-19 met the inclusion criteria, there were 1145 (62.8%) males and 677 (31.2%) females, and the mean age was 63.8 ± 16.1 years. The concentration of MR-proADM was compared between the survivors and non-survivors in 9 studies and the difference was significant (P < 0.01), I2 = 46%. The combined sensitivity was 0.86 [0.73-0.92], and the combined specificity was 0.78 [0.68-0.86]. We drew the summary receiver operating characteristic (SROC) curve and calculated the area under curve (AUC) = 0.90 [0.87-0.92]. An increase of 1 nmol/L of MR-proADM was independently associated with a more than threefold increase in mortality (odds ratio (OR) 3.03, 95% confidence interval (CI) 2.26-4.06, I2 = 0.0%, P = 0.633). The predictive value of MR-proADM for mortality was better than many other biomarkers. CONCLUSION: MR-proADM had a very good predictive value for the poor prognosis of COVID-19 patients. Increased levels of MR-proADM were independently associated with mortality in COVID-19 patients and may allow a better risk stratification.


Subject(s)
COVID-19 , Female , Male , Humans , Middle Aged , Aged , Adrenomedullin , Area Under Curve , Asian People
11.
BMC Neurosci ; 23(1): 79, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575370

ABSTRACT

Infant emotional stimuli can preferentially engage adults' attention and provide valuable information essential for successful interaction between adults and infants. Exploring the neural processes of recognizing infant stimuli promotes better understandings of the mother-infant attachment mechanisms. Here, combining task-functional magnetic resonance imaging (Task-fMRI) and resting-state fMRI (rs-fMRI), we investigated the effects of infants' faces on the brain activity of adults. Two groups including 26 women and 25 men were recruited to participate in the current study. During the task-fMRI, subjects were exposed to images of infant emotional faces (including happy, neutral, and sad) randomly. We found that the brains of women and men reacted differently to infants' faces, and these differential areas are in facial processing, attention, and empathetic networks. The rs-fMRI further showed that the connectivity of the default-mode network-related regions increased in women than in men. Additionally, brain activations in regions related to emotional networks were associated with the empathetic abilities of women. These differences in women might facilitate them to more effective and quick adjustments in behaviors and emotions during the nurturing infant period. The findings provide special implications and insights for understanding the neural processing of reacting to infant cues in adults.


Subject(s)
Brain , Emotions , Male , Adult , Humans , Infant , Female , Sex Factors , Emotions/physiology , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Attention/physiology , Magnetic Resonance Imaging , Facial Expression
12.
Psychol Med ; 52(4): 737-746, 2022 03.
Article in English | MEDLINE | ID: mdl-32684185

ABSTRACT

BACKGROUND: Individual with internet gaming disorder (IGD) often experience a high level of loneliness, and neuroimaging studies have demonstrated that amygdala function is associated with both IGD and loneliness. However, the neurobiological basis underlying these relationships remains unclear. METHODS: In the current study, Granger causal analysis was performed to investigate amygdalar subdivision-based resting-state effective connectivity differences between 111 IGD subjects and 120 matched participants with recreational game use (RGUs). We further correlated neuroimaging findings with clinical measures. Mediation analysis was conducted to explore whether amygdalar subdivision-based effective connectivity mediated the relationship between IGD severity and loneliness. RESULTS: Compared with RGUs, IGD subjects showed inhibitory effective connections from the left pregenual anterior cingulate cortex (pACC) to the left laterobasal amygdala (LBA) and from the right medial prefrontal cortex (mPFC) to the left LBA, as well as an excitatory effective connection from the left middle prefrontal gyrus (MFG) to the right superficial amygdala. Further analyses demonstrated that the left pACC-left LBA effective connection was negatively correlated with both Internet Addiction Test and UCLA Loneliness scores, and it mediated the relationship between the two. CONCLUSION: IGD subjects and RGUs showed different connectivity patterns involving amygdalar subdivisions. These findings support a neurobiological mechanism for the relationship between IGD and loneliness, and suggest targets for therapeutic approaches that could be used to treat IGD.


Subject(s)
Internet Addiction Disorder , Video Games , Humans , Amygdala/diagnostic imaging , Brain , Brain Mapping/methods , Gyrus Cinguli/diagnostic imaging , Internet , Internet Addiction Disorder/diagnostic imaging , Loneliness , Magnetic Resonance Imaging/methods
13.
CNS Spectr ; 27(1): 109-117, 2022 02.
Article in English | MEDLINE | ID: mdl-32951628

ABSTRACT

BACKGROUND: Individuals with internet gaming disorder (IGD) are generally characterized by impaired executive control, persistent game-craving, and excessive reward-seeking behaviors. However, the causal interactions within the frontostriatal circuits underlying these problematic behaviors remain unclear. Here, spectral dynamic causal modeling (spDCM) was implemented to explore this issue. METHODS: Resting-state functional magnetic resonance imaging data from 317 online game players (148 IGD subjects and 169 recreational game users (RGUs)) were collected. Using independent component analysis, we determined six region of interests within frontostriatal circuits for further spDCM analysis, and further statistical analyses based on the parametric empirical Bayes framework were performed. RESULTS: Compared with RGUs, IGD subjects showed inhibitory effective connectivity from the right orbitofrontal cortex (OFC) to the right caudate and from the right dorsolateral prefrontal cortex to the left OFC; at the same time, excitatory effective connectivity was observed from the thalamus to the left OFC. Correlation analyses results showed that the directional connection from the right OFC to the right caudate was negatively associated with addiction severity. CONCLUSIONS: These results suggest that the disrupted causal interactions between specific regions might contribute to dysfunctions within frontostriatal circuits in IGD, and the pathway from the right OFC to the right caudate could serve as a target for brain modulation in future IGD interventions.


Subject(s)
Behavior, Addictive , Video Games , Humans , Bayes Theorem , Brain , Brain Mapping/methods , Craving , Internet , Internet Addiction Disorder/diagnostic imaging , Magnetic Resonance Imaging/methods
14.
Psychol Med ; 51(9): 1549-1561, 2021 07.
Article in English | MEDLINE | ID: mdl-32102722

ABSTRACT

BACKGROUND: Studies of Internet gaming disorder (IGD) suggest an imbalanced relationship between cognitive control and reward processing in people with IGD. However, it remains unclear how these two systems interact with each other, and whether they could serve as neurobiological markers for IGD. METHODS: Fifty IGD subjects and matched individuals with recreational game use (RGU) were selected and compared when they were performing a cue-craving task. Regions of interests [anterior cingulate cortex (ACC), lentiform nucleus] were selected based on the comparison between brain responses to gaming-related cues and neutral cues. Directional connectivities among these brain regions were determined using Bayesian estimation. We additionally examined the posterior cingulate cortex (PCC) in a separate analysis based on data implicating the PCC in craving in addiction. RESULTS: During fixed-connectivity analyses, IGD subjects showed blunted ACC-to-lentiform and lentiform-to-ACC connectivity relative to RGU subjects, especially in the left hemisphere. When facing gaming cues, IGD subjects trended toward lower left-hemispheric modulatory effects in ACC-to-lentiform connectivity than RGU subjects. Self-reported cue-related craving prior to scanning correlated inversely with left-hemispheric modulatory effects in ACC-to-lentiform connectivity. CONCLUSIONS: The results suggesting that prefrontal-to-lentiform connectivity is impaired in IGD provides a possible neurobiological mechanism for difficulties in controlling gaming-cue-elicited cravings. Reduced connectivity ACC-lentiform connectivity may be a useful neurobiological marker for IGD.


Subject(s)
Brain Mapping/methods , Corpus Striatum/diagnostic imaging , Craving/physiology , Internet Addiction Disorder/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Adult , Bayes Theorem , Behavior, Addictive , Cues , Executive Function/physiology , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Reward , Video Games/psychology , Young Adult
15.
Cerebellum ; 20(5): 804-809, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33547587

ABSTRACT

Benign paroxysmal positional vertigo (BPPV) is one of the most common peripheral vestibular diseases. Since the peripheral vestibular system connects with the cerebellum via the brainstem, repeated episodic vertigo may result in progressive structural and functional changes in the cerebellum and brainstem. In the present work, voxel-based morphometry (VBM) of T1-weighted images and resting-state functional magnetic resonance imaging (fMRI) in 32 patients with BPPV and 32 matched healthy controls were used to assess cerebellar and brainstem anatomical and spontaneous resting-state brain activity alterations associated with BPPV. We used a spatially unbiased infratentorial template toolbox in combination with VBM to analyze cerebellar and brainstem gray matter volume (GMV), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo). Patients with BPPV showed decreased GMV in the right cerebellum posterior lobe/cerebellar tonsil extending to the cerebellum anterior lobe and pons relative to healthy controls. BPPV patients also exhibited significantly higher fALFF values in the right pons and left pons and higher ReHo values in the left cerebellum posterior lobe/Crus2 than the controls. Furthermore, the fALFF z-scores in the pons were positively correlated with the duration of vertigo at baseline and dizziness visual analog scale scores 1 week after canalith repositioning procedures (CRPs). BPPV patients exhibited structural and functional changes in the cerebellum and pons, which may reflect the adaptation and plasticity of these anatomical structures after repeated attacks of episodic vertigo. These results indicate that the changes in pons function may be closely related to residual dizziness after CRPs.


Subject(s)
Benign Paroxysmal Positional Vertigo , Vestibular Diseases , Benign Paroxysmal Positional Vertigo/diagnostic imaging , Cerebellum/diagnostic imaging , Dizziness , Humans , Magnetic Resonance Imaging
16.
Rapid Commun Mass Spectrom ; 35(23): e9198, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34559434

ABSTRACT

RATIONALE: Resolution and sensitivity are two key parameters for describing the performance of high-field asymmetric waveform ion mobility spectrometry (FAIMS). An increase in the resolving power of FAIMS has been realized by adding helium to nitrogen in planar FAIMS, but it comes at the expense of sensitivity. METHODS: Here, a new hollow needle-to-ring discharge device integrated on a PCB substrate is used as the ion source for FAIMS. Helium flows from the hollow part of the hollow needle to improve the ionization effect. Nitrogen carries the sample into the ionization chamber and is mixed with helium as the carrier gas. RESULTS: Under a nitrogen flow rate of 1 L min-1 , 1.5 L min-1 , 2 L min-1 , and 2.5 L min-1 , adding helium at different flow rates (0.2 L min-1 , 0.3 L min-1 , 0.5 L min-1 , and 1 L min-1 ) can simultaneously improve the separation ability and sensitivity. Helium and nitrogen with flow rates of 0.2, 0.3, 0.5, and 1 L min-1 were added to nitrogen (2 L min-1 ). The separation ability and sensitivity of the mixed gases doped with helium are better than those of nitrogen. The larger the RF voltage amplitude is, the more obvious the improvement in the separation ability when helium is added. However, helium doping has the opposite effect on the sensitivity. CONCLUSIONS: This study provides a new idea and technical means for the application of helium and nitrogen gas mixtures in planar FAIMS. This method can greatly improve the performance of FAIMS.

17.
Anal Bioanal Chem ; 413(11): 2855-2866, 2021 May.
Article in English | MEDLINE | ID: mdl-33666712

ABSTRACT

A carrier gas mixture of nitrogen and helium has been employed to improve the resolving power at the expense of sensitivity for planar high-field asymmetric ion mobility spectrometry (FAIMS) in previous work. In this paper, a new hollow needle-to-ring ion source was developed, where the helium and nitrogen enter from the hollow needle and ring, respectively. It was found that the signal strengths of acetone, ethanol, and ethyl acetate increased by 8.5, 2.0, and 3.3 times for helium ratios of 20%, 20%, and 10%, respectively. At the same time, the absolute value of compensation voltage and the number of ion peaks increases. It shows that adding an appropriate helium ratio to nitrogen simultaneously improved the sensitivity and resolving power of planar FAIMS, which is reported for the first time.

18.
Sensors (Basel) ; 21(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577367

ABSTRACT

High-field asymmetric ion mobility spectrometry (FAIMS) spectra of single chemicals are easy to interpret but identifying specific chemicals within complex mixtures is difficult. This paper demonstrates that the FAIMS system can detect specific chemicals in complex mixtures. A homemade FAIMS system is used to analyze pure ethanol, ethyl acetate, acetone, 4-methyl-2-pentanone, butanone, and their mixtures in order to create datasets. An EfficientNetV2 discriminant model was constructed, and a blind test set was used to verify whether the deep-learning model is capable of the required task. The results show that the pre-trained EfficientNetV2 model completed convergence at a learning rate of 0.1 as well as 200 iterations. Specific substances in complex mixtures can be effectively identified using the trained model and the homemade FAIMS system. Accuracies of 100%, 96.7%, and 86.7% are obtained for ethanol, ethyl acetate, and acetone in the blind test set, which are much higher than conventional methods. The deep learning network provides higher accuracy than traditional FAIMS spectral analysis methods. This simplifies the FAIMS spectral analysis process and contributes to further development of FAIMS systems.


Subject(s)
Deep Learning , Ion Mobility Spectrometry , Complex Mixtures
19.
Cogn Neuropsychol ; 37(7-8): 450-465, 2020.
Article in English | MEDLINE | ID: mdl-32529964

ABSTRACT

Although semantic system is composed of two distinctive processes (i.e., semantic knowledge and semantic control), it remains unknown in which way these two processes dissociate from each other. Investigating the white matter neuroanatomy underlying these processes helps improve understanding of this question. To address this issue, we recruited brain-damaged patients with semantic dementia (SD) and semantic aphasia (SA), who had selective predominant deficits in semantic knowledge and semantic control, respectively. We built regression models to identify the white matter network associated with the semantic performance of each patient group. Semantic knowledge deficits in the SD patients were associated with damage to the left medial temporal network, while semantic control deficits in the SA patients were associated with damage to the other two networks (left frontal-temporal/occipital and frontal-subcortical networks). The further voxel-based analysis revealed additional semantic-relevant white matter tracts. These findings specify different processing principles of the components in semantic system.


Subject(s)
Brain Mapping/methods , Neuropsychological Tests/standards , Semantics , White Matter/physiopathology , Aged , Female , Humans , Male , Middle Aged
20.
BMC Neurol ; 20(1): 128, 2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32278343

ABSTRACT

BACKGROUND: Hyperhomocysteinemia (HHCY) is a risk factor for cardiovascular and cerebrovascular diseases. The C677T 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphism increases homocysteine (HCY) levels. This study analyzed the relationship between C677T MTHFR polymorphism and the therapeutic effect of lowering HCY in stroke patients with HHCY. METHODS: Baseline data were collected from stroke patients with HHCY for this prospective cohort study. The C677T MTHFR genotype was detected by polymerase chain reaction-restriction fragment length polymorphism and the therapeutic effect to reduce HCY was compared. RESULTS: Of 200 stroke patients 162 (81.0%) completed follow-up and were evaluated. Most of them responded well to treatment (103 cases, 63.5%), but 59 (36.4%) patients were in the poor efficacy group. There was a significant difference in terms of age (P < 0.001), hypertension (P = 0.041), hyperuricemia (P = 0.042), HCY after treatment (P < 0.001), and MTHFR genotype (P < 0.001) between the poor efficacy and effective groups, with increased frequency of the TT genotype in the poor efficacy group. Logistic regression showed that the T allele was associated with poor efficacy (OR = 0.733, 95%CI: 0.693, 0.862, P < 0.001). In the codominant model the TT genotype was associated with poor outcome (OR = 0.862, 95%CI: 0.767, 0.970, P = 0.017) and this was also the case in the recessive model (OR = 0.585, 95%CI: 0.462, 0.741, P < 0.001) but there was no association between CT and TT in the dominant model. CONCLUSIONS: The T allele and TT genotype of the MTHFR C677T polymorphism was associated with poor HCY reduction treatment efficacy in stroke patients with HHCY. TRIAL REGISTRATION: The registration number of the clinical trial is ChiCTR1800020048. Registration date: December 12, 2018.


Subject(s)
Homocysteine/blood , Hyperhomocysteinemia/therapy , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Stroke/complications , Adult , Aged , Alleles , Cohort Studies , Female , Genotype , Humans , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL