Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Planta ; 259(5): 101, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536474

ABSTRACT

MAIN CONCLUSION: Axillary meristems (AMs) located in the leaf axils determine the number of shoots or tillers eventually formed, thus contributing significantly to the plant architecture and crop yields. The study of AM initiation is unavoidable and beneficial for crop productivity. Shoot branching is an undoubted determinant of plant architecture and thus greatly impacts crop yield due to the panicle-bearing traits of tillers. The emergence of the AM is essential for the incipient bud formation, and then the bud is dormant or outgrowth immediately to form a branch or tiller. While numerous reviews have focused on plant branching and tillering development networks, fewer specifically address AM initiation and its regulatory mechanisms. This review synthesizes the significant advancements in the genetic and hormonal factors governing AM initiation, with a primary focus on studies conducted in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.). In particular, by elaborating on critical genes like LATERAL SUPPRESSOR (LAS), which specifically regulates AM initiation and the networks in which they are involved, we attempt to unify the cascades through which they are positioned. We concentrate on clarifying the precise mutual regulation between shoot apical meristem (SAM) and AM-related factors. Additionally, we examine challenges in elucidating AM formation mechanisms alongside opportunities provided by emerging omics approaches to identify AM-specific genes. By expanding our comprehension of the genetic and hormonal regulation of AM development, we can develop strategies to optimize crop production and address global food challenges effectively.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Meristem , Plant Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Shoots , Arabidopsis Proteins/metabolism
2.
Mol Breed ; 44(7): 47, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38939116

ABSTRACT

Branching/tillering is a critical process for plant architecture and grain yield. However, Branching is intricately controlled by both endogenous and environmental factors. The underlying mechanisms of tillering in wheat remain poorly understood. In this study, we identified Less Tiller 1 (LT1) as a novel regulator of wheat tillering using an enhanced bulked segregant analysis (BSA) method, uni-BSA. This method effectively reduces alignment noise caused by the high repetitive sequence content in the wheat genome. Loss-of-function of LT1 results in fewer tillers due to defects in axillary meristem initiation and bud outgrowth. We mapped LT1 to a 6 Mb region on the chromosome 2D short arm and validated a nucleotide-binding (NB) domain encoding gene as LT1 using CRISPR/Cas9. Furthermore, the lower sucrose concentration in the shoot bases of lt1 might result in inadequate bud outgrowth due to disturbances in the sucrose biosynthesis pathways. Co-expression analysis suggests that LT1 controls tillering by regulating TaROX/TaLAX1, the ortholog of the Arabidopsis tiller regulator REGULATOR OF AXILLARY MERISTEM FORMATION (ROX) or the rice axillary meristem regulator LAX PANICLE1 (LAX1). This study not only offers a novel genetic resource for cultivating optimal plant architecture but also underscores the importance of our innovative BSA method. This uni-BSA method enables the swift and precise identification of pivotal genes associated with significant agronomic traits, thereby hastening gene cloning and crop breeding processes in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01484-7.

3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33579824

ABSTRACT

Plant meristems are self-renewing groups of pluripotent stem cells that produce lateral organs in a stereotypical pattern. Of interest is how the radially symmetrical meristem produces laminar lateral organs. Both the male and female inflorescence meristems of the dominant Fascicled ear (Fas1) mutant fail to grow as a single point and instead show deep branching. Positional cloning of two independent Fas1 alleles identified an ∼160 kb region containing two floral genes, the MADS-box gene, zmm8, and the YABBY gene, drooping leaf2 (drl2). Both genes are duplicated within the Fas1 locus and spatiotemporally misexpressed in the mutant inflorescence meristems. Increased zmm8 expression alone does not affect inflorescence development; however, combined misexpression of zmm8, drl2, and their syntenic paralogs zmm14 and drl1, perturbs meristem organization. We hypothesize that misexpression of the floral genes in the inflorescence and their potential interaction cause ectopic activation of a laminar program, thereby disrupting signaling necessary for maintenance of radially symmetrical inflorescence meristems. Consistent with this hypothesis, RNA sequencing and in situ analysis reveal altered expression patterns of genes that define distinct zones of the meristem and developing leaf. Our findings highlight the importance of strict spatiotemporal patterns of expression for both zmm8 and drl2 and provide an example of phenotypes arising from tandem gene duplications.


Subject(s)
Gene Duplication , Meristem/growth & development , Zea mays/genetics , Flowers/genetics , Flowers/growth & development , Meristem/cytology , Meristem/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/growth & development
4.
Plant Cell Environ ; 46(3): 975-990, 2023 03.
Article in English | MEDLINE | ID: mdl-36515184

ABSTRACT

Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus. ZmBET5L1 knock-out increased the primary root elongation rate under 20% polyethylene glycol-simulated osmotic stress and the survival rate under drought stress compared to wild-type seedlings. In addition, we found that ZmBET5L1 moderates PIN1 polar localization and auxin flow to maintain normal root growth. ZmBET5L1 knock-out optimized auxin flow to the lateral side of the root and promoted its growth to generate a robust root, which may be related to improved osmotic stress tolerance. Together, these findings demonstrate that ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by regulating vesicle transport and auxin distribution. This study has improved our understanding of the role of tethering factors in response to abiotic stresses and identified desirable variants for breeding osmotic stress tolerance in maize.


Subject(s)
Seedlings , Zea mays , Zea mays/physiology , Osmotic Pressure , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological , Droughts , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
5.
PLoS Genet ; 16(4): e1008764, 2020 04.
Article in English | MEDLINE | ID: mdl-32330129

ABSTRACT

Enhancers are cis-acting DNA segments with the ability to increase target gene expression. They show high sensitivity to DNase and contain specific DNA elements in an open chromatin state that allows the binding of transcription factors (TFs). While numerous enhancers are annotated in the maize genome, few have been characterized genetically. KERNEL ROW NUMBER4 (KRN4), an intergenic quantitative trait locus for kernel row number, is assumed to be a cis-regulatory element of UNBRANCHED3 (UB3), a key inflorescence gene. However, the mechanism by which KRN4 controls UB3 expression remains unclear. Here, we found that KRN4 exhibits an open chromatin state, harboring sequences that showed high enhancer activity toward the 35S and UB3 promoters. KRN4 is bound by UB2-centered transcription complexes and interacts with the UB3 promoter by three duplex interactions to affect UB3 expression. Sequence variation at KRN4 enhances ub2 and ub3 mutant ear fasciation. Therefore, we suggest that KRN4 functions as a distal enhancer of the UB3 promoter via chromatin interactions and recruitment of UB2-centered transcription complexes for the fine-tuning of UB3 expression in meristems of ear inflorescences. These results provide evidence that an intergenic region helps to finely tune gene expression, providing a new perspective on the genetic control of quantitative traits.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Plant , Zea mays/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Developmental , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Zea mays/growth & development
6.
BMC Plant Biol ; 22(1): 127, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303806

ABSTRACT

BACKGROUND: Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (Zea mays) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to Unbranched3. However, the regulatory pathway of gif1 in ear meristems is relatively unknown. RESULT: In this study, we found that loss-of-function gif1 mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene RAMOSA2 (RA2) and CLAVATA signaling-related gene CLV3/ENDOSPERM SURROUNDING REGION (ESR) 4a (CLE4a) were directly bound and regulated by GIF1 in the ear inflorescence. CONCLUSIONS: Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.


Subject(s)
Gene Expression Regulation, Plant , Plant Growth Regulators/biosynthesis , Plant Proteins/metabolism , Transcriptome , Zea mays/genetics , Chromatin Immunoprecipitation Sequencing , Gene Expression , Gene Fusion , Genes, Reporter , Inflorescence/anatomy & histology , Inflorescence/genetics , Inflorescence/growth & development , Loss of Function Mutation , Meristem/anatomy & histology , Meristem/genetics , Meristem/growth & development , Phenotype , Plant Proteins/genetics , Zea mays/anatomy & histology , Zea mays/growth & development
7.
Pediatr Surg Int ; 38(4): 631-635, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35138456

ABSTRACT

INTRODUCTION: The first-line approach for the management of distal vaginal atresia involves a pull-through vaginoplasty. If the proximal vagina is 3 cm or more from the introitus, the risk of stenosis is high, and an interposition graft may be necessary. We describe a safe, low-cost, and accessible approach for distal vaginal atresia ≥ 3 cm that we call the "modified balloon vaginoplasty" and validate the technical feasibility and anatomical outcomes. METHODS: Ten patients who underwent modified balloon vaginoplasty were retrospectively evaluated. Age, symptoms at presentation, length of atresia, operation time, and postoperative complications were analyzed. RESULTS: All the cases were successfully performed without any intraoperative morbidity. The postoperative complications included one case of stenosis ring in the distal vagina because not right used vagina model. All the girls had regular menstruation and were satisfied with the surgical outcome. CONCLUSION: Modified balloon vaginoplasty allows further distention of the distal vagina or thinning of the septum, which may decrease the risk of stenosis, is a beneficial choice for patients with distal vaginal atresia ≥ 3 cm.


Subject(s)
Gynecologic Surgical Procedures , Vagina , Constriction, Pathologic/surgery , Female , Humans , Postoperative Complications/epidemiology , Retrospective Studies , Vagina/abnormalities , Vagina/surgery
8.
Parasitol Res ; 119(9): 3013-3022, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32740752

ABSTRACT

Babesiosis is a tick-borne protozoonosis caused by Babesia, which can cause fever, hemolytic anemia, hemoglobinuria, and even death. Babesia microti is a parasite found in rodents and can be pathogenic to humans. In this study, the full-length cDNA of a B. microti cysteine protease (BmCYP) was expressed and the recombinant rBmCYP protein analyzed and characterized. BmCYP is encoded by an ORF of 1.3 kb, with a predicted molecular weight of 50 kDa and a theoretical pI of 8.5. The amino acid sequence of BmCYP exhibits an identity of 32.9 to 35.2% with cysteine proteases of Babesia ovis, Babesia bovis, and Theileria, respectively. The results of the proteinase assays show that rBmCYP has cysteine protease enzymatic activity. In addition, we demonstrate that tick cystatins rRhcyst-1 and rRhcyst-2 were able to effectively inhibit the activity of rBmCYP; the inhibition rates were 57.2% and 30.9%, respectively. Tick cystatins Rhcyst-1 and Rhcyst-2 were differentially expressed in ticks that fed on Babesia-infected mice relative to non-infected control ticks. Our results suggest that BmCYP is a functional enzyme with cysteine protease enzymatic activity and may be involved in tick-B. microti interactions.


Subject(s)
Arthropod Proteins/metabolism , Babesia microti/enzymology , Cystatins/metabolism , Cysteine Proteases/metabolism , Protozoan Proteins/metabolism , Ticks/metabolism , Ticks/parasitology , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Babesia bovis/chemistry , Babesia bovis/enzymology , Babesia bovis/genetics , Babesia microti/chemistry , Babesia microti/genetics , Babesiosis/parasitology , Cystatins/genetics , Cysteine Proteases/chemistry , Cysteine Proteases/genetics , Humans , Mice , Mice, Inbred BALB C , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Ticks/genetics
9.
Int J Clin Oncol ; 24(11): 1359-1366, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31183778

ABSTRACT

BACKGROUND: The study was designed to explore the value of including positive lymph node count in the TNM staging system of non-small cell lung cancer. PATIENTS AND METHODS: The X-tile model was applied to determine the cutoff values of positive lymph node count. Survival curves were generated using the Kaplan-Meier method and differences in survival among subgroups were examined using the log-rank test. The influence of different variables on overall survival and lung cancer-specific survival was further evaluated using univariate and multivariate Cox proportional hazard models. All statistical analyses were performed using SPSS version 22.0 (SPSS, Chicago, IL, USA). All p values were 2-sided and p < 0.05 was considered statistically significant. RESULTS: The overall survival and lung cancer-specific survival between stage IIIA and IIIB classified by the sixth edition TNM staging system show no statistically significant difference (p = 0.479 for overall survival; p = 0.081 for lung cancer specific survival). The X-tile model was used to screen three different cutoff values including nN = 0, nN1-3 and nN4-. The nN value is a significant independent prognostic factor that affects overall survival and lung cancer-specific survival of non-small cell lung cancer patients (all, p < 0.001). We obtained the hypothesized TNM sub-stages based on location and the number of PLN. There were significant differences between the hypothesized stage IIIA and IIIB regarding overall survival and lung cancer-specific survival (all, p < 0.001). CONCLUSIONS: It needs to be considered that N stage in combination with positive lymph node count may be used to predict the prognosis of non-small cell lung cancer for stage III cases with increased accuracy than category location-based stage.


Subject(s)
Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lymph Nodes/pathology , Adult , Aged , Female , Humans , Lymphatic Metastasis/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Proportional Hazards Models , Retrospective Studies , SEER Program , Survival Rate
10.
J Proteome Res ; 17(9): 3061-3074, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30091610

ABSTRACT

Although the legume-rhizobium symbiosis is a most-important biological process, there is a limited knowledge about the protein interaction network between host and symbiont. Using interolog- and domain-based approaches, we constructed an interspecies protein interactome containing 5115 protein-protein interactions between 2291 Glycine max and 290 Bradyrhizobium diazoefficiens USDA 110 proteins. The interactome was further validated by the expression pattern analysis in nodules, gene ontology term semantic similarity, co-expression analysis, and luciferase complementation image assay. In the G. max-B. diazoefficiens interactome, bacterial proteins are mainly ion channel and transporters of carbohydrates and cations, while G. max proteins are mainly involved in the processes of metabolism, signal transduction, and transport. We also identified the top 10 highly interacting proteins (hubs) for each species. Kyoto Encyclopedia of Genes and Genomes pathway analysis for each hub showed that a pair of 14-3-3 proteins (SGF14g and SGF14k) and 5 heat shock proteins in G. max are possibly involved in symbiosis, and 10 hubs in B. diazoefficiens may be important symbiotic effectors. Subnetwork analysis showed that 18 symbiosis-related soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins may play roles in regulating bacterial ion channels, and SGF14g and SGF14k possibly regulate the rhizobium dicarboxylate transport protein DctA. The predicted interactome provide a valuable basis for understanding the molecular mechanism of nodulation in soybean.


Subject(s)
Bacterial Proteins/metabolism , Bradyrhizobium/metabolism , Computational Biology/methods , Glycine max/metabolism , Plant Proteins/metabolism , Protein Interaction Maps , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bradyrhizobium/genetics , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/metabolism , Gene Expression , Gene Ontology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Molecular Sequence Annotation , Nitrogen Fixation/physiology , Plant Proteins/classification , Plant Proteins/genetics , Protein Binding , Protein Interaction Mapping , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , SNARE Proteins/genetics , SNARE Proteins/metabolism , Glycine max/genetics , Glycine max/microbiology , Symbiosis/physiology
11.
PLoS Genet ; 11(11): e1005670, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26575831

ABSTRACT

Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize.


Subject(s)
Plant Proteins/genetics , Zea mays/genetics , Cloning, Molecular , Gene Expression Profiling , Genes, Plant , Zea mays/growth & development
12.
J Integr Plant Biol ; 60(6): 465-480, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29319223

ABSTRACT

Flowering time is a trait vital to the adaptation of flowering plants to different environments. Here, we report that CCT domain genes play an important role in flowering in maize (Zea mays L.). Among the 53 CCT family genes we identified in maize, 28 were located in flowering time quantitative trait locus regions and 15 were significantly associated with flowering time, based on candidate-gene association mapping analysis. Furthermore, a CCT gene named ZmCOL3 was shown to be a repressor of flowering. Overexpressing ZmCOL3 delayed flowering time by approximately 4 d, in either long-day or short-day conditions. The absence of one cytosine in the ZmCOL3 3'UTR and the presence of a 551 bp fragment in the promoter region are likely the causal polymorphisms contributing to the maize adaptation from tropical to temperate regions. We propose a modified model of the maize photoperiod pathway, wherein ZmCOL3 acts as an inhibitor of flowering either by transactivating transcription of ZmCCT, one of the key genes regulating maize flowering, or by interfering with the circadian clock.


Subject(s)
Circadian Clocks/genetics , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Genes, Plant , Plant Proteins/genetics , Zea mays/genetics , Models, Biological , Photoperiod , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified , Polymorphism, Genetic , Reproducibility of Results , Transformation, Genetic
13.
New Phytol ; 214(2): 721-733, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28040882

ABSTRACT

UNBRANCHED3 (UB3), a member of the SQUAMOSA promoter binding protein-like (SPL) gene family, regulates kernel row number by negatively modulating the size of the inflorescence meristem in maize. However, the regulatory pathway by which UB3 mediates branching remains unknown. We introduced the UB3 into rice and maize to reveal its effects in the two crop plants, respectively. Furthermore, we performed transcriptome sequencing and protein-DNA binding assay to elucidate the regulatory pathway of UB3. We found that UB3 could bind and regulate the promoters of LONELY GUY1 (LOG1) and Type-A response regulators (ARRs), which participate in cytokinin biosynthesis and signaling. Overexpression of exogenous UB3 in rice (Oryza sativa) dramatically suppressed tillering and panicle branching as a result of a greater decrease in the amount of active cytokinin. By contrast, moderate expression of UB3 suppressed tillering slightly, but promoted panicle branching by cooperating with SPL genes, resulting in a higher grain number per panicle in rice. In maize (Zea mays) ub3 mutant with an increased kernel row number, UB3 showed a low expression but cytokinin biosynthesis-related genes were up-regulated and degradation-related genes were down-regulated. These results suggest that UB3 regulates vegetative and reproductive branching by modulating cytokinin biosynthesis and signaling in maize and rice.


Subject(s)
Cytokinins/biosynthesis , Oryza/metabolism , Plant Proteins/metabolism , Signal Transduction , Zea mays/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Inflorescence/anatomy & histology , Mutation/genetics , Oryza/anatomy & histology , Oryza/genetics , Plants, Genetically Modified , Regeneration , Transcriptome/genetics
14.
Theor Appl Genet ; 128(11): 2243-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26188589

ABSTRACT

KEY MESSAGE: Maize kernel row number might be dominated by a set of large additive or partially dominant loci and several small dominant loci and can be accurately predicted by fewer than 300 top KRN-associated SNPs. Kernel row number (KRN) is an important yield component in maize and directly affects grain yield. In this study, we combined linkage and association mapping to uncover the genetic architecture of maize KRN and to evaluate the phenotypic predictability using these detected loci. A genome-wide association study revealed 31 associated single nucleotide polymorphisms (SNPs) representing 17 genomic loci with an effect in at least one of five individual environments and the best linear unbiased prediction (BLUP) over all environments. Linkage mapping in three F2:3 populations identified 33 KRN quantitative trait loci (QTLs) representing 21 QTLs common to several population/environments. The majority of these common QTLs that displayed a large effect were additive or partially dominant. We found 70% KRN-associated genomic loci were mapped in KRN QTLs identified in this study, KRN-associated SNP hotspots detected in NAM population and/or previous identified KRN QTL hotspots. Furthermore, the KRN of inbred lines and hybrids could be predicted by the additive effect of the SNPs, which was estimated using inbred lines as a training set. The prediction accuracy using the top KRN-associated tag SNPs was obviously higher than that of the randomly selected SNPs, and approximately 300 top KRN-associated tag SNPs were sufficient for predicting the KRN of the inbred lines and hybrids. The results suggest that the KRN-associated loci and QTLs that were detected in this study show great potential for improving the KRN with genomic selection in maize breeding.


Subject(s)
Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds , Zea mays/genetics , Chromosome Mapping , Genes, Dominant , Genetic Association Studies , Genetic Linkage , Genetics, Population , Models, Genetic , Phenotype
15.
Tissue Eng Regen Med ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937423

ABSTRACT

BACKGROUND: 3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction. METHODS: In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography. The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes' effect of promotion vaginal reconstruction and to explore the mechanism in this process. RESULTS: It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway. CONCLUSION: The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.

16.
Tissue Eng Regen Med ; 21(2): 277-290, 2024 02.
Article in English | MEDLINE | ID: mdl-37947984

ABSTRACT

BACKGROUND: Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a severe congenital disorder characterized by vaginal hypoplasia caused by dysplasia of the Müllerian duct. Patients with MRKH syndrome often require nonsurgical or surgical treatment to achieve satisfactory vaginal length and sexual outcomes. The extracellular matrix has been successfully used for vaginal reconstruction. METHODS: In this study, we developed a new biological material derived from porcine vagina (acellular vaginal matrix, AVM) to reconstruct the vagina in Bama miniature pigs. The histological characteristics and efficacy of acellularization of AVM were evaluated, and AVM was subsequently transplanted into Bama miniature pigs to reconstruct the vaginas. RESULTS: Macroscopic analysis showed that the neovaginas functioned well in all Bama miniature pigs with AVM implants. Histological analysis and electrophysiological evidence indicated that morphological and functional recovery was restored in normal vaginal tissues. Scanning electron microscopy showed that the neovaginas had mucosal folds characteristics of normal vagina. No significant differences were observed in the expression of CK14, HSP47, and α-actin between the neovaginas and normal vaginal tissues. However, the expression of estrogen receptor (ER) was significantly lower in the neovaginas than in normal vaginal tissues. In addition, AVM promoted the expression of ß-catenin, c-Myc, and cyclin D1. These results suggest that AVM might promotes vaginal regeneration by activating the ß-catenin/c-Myc/cyclin D1 pathway. CONCLUSION: This study reveals that porcine-derived AVM has potential application for vaginal regeneration.


Subject(s)
46, XX Disorders of Sex Development , Congenital Abnormalities , Cyclin D1 , Mullerian Ducts/abnormalities , Tissue Engineering , Humans , Female , Swine , Animals , beta Catenin , Swine, Miniature , Vagina/abnormalities , Vagina/surgery
17.
Plants (Basel) ; 12(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896091

ABSTRACT

Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions.

18.
Front Immunol ; 14: 1288027, 2023.
Article in English | MEDLINE | ID: mdl-38022625

ABSTRACT

Ovarian cancer is a highly heterogeneous and lethal malignancy with limited treatment options. Over the past decade, single-cell sequencing has emerged as an advanced biological technology capable of decoding the landscape of ovarian cancer at the single-cell resolution. It operates at the level of genes, transcriptomes, proteins, epigenomes, and metabolisms, providing detailed information that is distinct from bulk sequencing methods, which only offer average data for specific lesions. Single-cell sequencing technology provides detailed insights into the immune and molecular mechanisms underlying tumor occurrence, development, drug resistance, and immune escape. These insights can guide the development of innovative diagnostic markers, therapeutic strategies, and prognostic indicators. Overall, this review provides a comprehensive summary of the diverse applications of single-cell sequencing in ovarian cancer. It encompasses the identification and characterization of novel cell subpopulations, the elucidation of tumor heterogeneity, the investigation of the tumor microenvironment, the analysis of mechanisms underlying metastasis, and the integration of innovative approaches such as organoid models and multi-omics analysis.


Subject(s)
Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/genetics , Epigenome , Multiomics , Organoids , Technology , Tumor Microenvironment/genetics
19.
Int J Mol Med ; 52(4)2023 10.
Article in English | MEDLINE | ID: mdl-37615174

ABSTRACT

Prolonging the reproductive lifespan is beneficial for preserving the physical and psychological health of women. The transplantation of mesenchymal stem cell (MSC)­derived exosomes (MSC­Exos) has been reported to be a promising regenerative therapeutic strategy for restoring the function of aging ovaries. The present study thus evaluated the therapeutic efficacy of exosomes derived from human umbilical cord­MSCs (hUCMSC­Exos) in a mouse model of natural ovarian aging (NOA), and further investigated the role of exosomal microRNAs (miRNAs/miRs) in the mechanisms of this creative therapy. Specifically, following the administration of hUCMSC­Exos in mice with NOA, ovarian function was found to improve, as indicated by the restoration of follicle numbers and hormone levels. These exosomes were found to exhibit the ability to inhibit PTEN expression and suppress apoptosis both in vivo and in vitro. Subsequently, miRNA sequencing of the exosomes was performed, following which bioinformatics analysis was used to identify the highly expressed miRNAs that are capable of targeting PTEN expression. Through high­throughput sequencing and molecular analyses, miR­21­5p was found to be the highest in ranking in terms of expression, suggesting that hUCMSC­Exos can preserve ovarian function by suppressing PTEN expression to inhibit apoptosis by delivering miR­21­5p. On the whole, the results of the present study suggest that the application of exosomes can be used to restore ovarian function in mice with NOA. These positive findings also suggest that the transplantation of exosomes derived from MSCs holds promise as an agent against ovarian aging.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Humans , Female , Animals , Mice , MicroRNAs/genetics , Aging , Apoptosis , Immunologic Factors
20.
Biomater Sci ; 11(21): 7077-7089, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37655798

ABSTRACT

Tissue engineering techniques bring the promise of vaginal reconstruction with low invasiveness and fewer complications. However, existing biomaterial scaffolds remain limited in efficient vaginal recovery, focusing only on regenerating an epithelial layer, but muscle layers are missing or abnormal. The lack of a multi-tissue hierarchical structure in the reconstructed vagina leads to shrinking, stenosis, and fibrosis. Here, an acellular matrix named a double-sided biomembrane (DBM) is demonstrated for vaginal recovery. The regeneration of epithelial and muscle layers is achieved simultaneously since the smooth side of the DBM is helpful for guiding epithelial cell growth, while its loose and porous side guides muscle cell growth. In addition, the DBM demonstrates excellent mechanical properties similar to vaginal tissue, and hydrophilicity. Therefore, neovaginas were observed in the fourth and twelfth weeks after DBMs were transplanted to repair full-thickness vaginal defects (4 cm) that we established in large animals. The DBMs can effectively promote rapid epithelialization, the formation of large muscle bundles, higher rates of angiogenesis, and the restoration of physiological function in a neovagina. That is, the injured vagina achieves nearly complete recovery in anatomy and function, similar to a normal vagina. These preclinical results indicate that the DBM has prospects for vaginal injury repair.

SELECTION OF CITATIONS
SEARCH DETAIL