Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Am Soc Nephrol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913434

ABSTRACT

BACKGROUND: Chronic Angiotensin-II (Ang-II) perfusion stimulates Kir4.1/Kir5.1 of the DCT via angiotensin-II-type-1a-receptor (AT1aR) and low-sodium-intake also stimulates Kir4.1/Kir5.1. However, it is not explored the role of AT1aR in mediating the effect of LS on Kir4.1/Kir5.1. METHODS: We used patch-clamp-technique to examine Kir4.1/Kir5.1 activity of the DCT, employed immunoblotting to examine NCC expression/activity, and used in vivo perfusion-technique to measure renal-Na+ and renal-K+-excretion in control, kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) and DCT-specific-AT1aR-knockout mice (DCT-AT1aR- KO). RESULTS: Ang-II acutely stimulated 40-pS-K+ channel (Kir4.1/Kir5.1-heterotetramer), increased whole-cell Kir4.1/Kir5.1-mediated K+-currents and the negativity of DCT-membrane-potential only in late-DCT2 but not in early-DCT. Acute Ang-II increased thiazide-induced renal Na+-excretion (ENa). The effect of Ang-II on Kir4.1/Kir5.1 and HCTZ-induced-ENa was absent in Ks-AT1aR-KO mice. Overnight-low-salt stimulated the expression of Agtr1a mRNA in DCT, increased whole-cell Kir4.1/Kir5.1-mediated K+-currents in late-DCT, hyperpolarized late-DCT membrane, augmented the expression of phosphor-Na-Cl-cotransporter (pNCC) and enhanced thiazide-induced renal-ENa in the control mice. However, the effect of overnight-low-salt on Kir4.1/Kir5.1-activity, DCT membrane potential and NCC activity/expression was abolished in DCT-AT1aR-KO or Ks-AT1aR-KO mice. Overnight-low-salt had no effect on baseline renal K+-excretion (EK) and plasma K+-concentrations in the control mice but it increased baseline renal-EK and decreased plasma K+-concentrations in DCT-AT1aR-KO or in Ks-AT1aR-KO mice. CONCLUSIONS: Acute Ang-II or overnight-LS stimulated Kir4.1/Kir5.1 in late-DCT and that AT1aR was responsible for acute Ang-II or overnight-low-salt-induced stimulation of Kir4.1/Kir5.1 and NCC. AT1aR of the DCT plays a role in maintaining adequate baseline renal-EK and plasma K+ concentrations during overnight-LS.

2.
J Am Soc Nephrol ; 34(6): 1019-1038, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36890646

ABSTRACT

SIGNIFICANCE STATEMENT: Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND: Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS: We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS: A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS: The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .


Subject(s)
Immediate-Early Proteins , Potassium , Mice , Animals , Phosphorylation , Potassium/metabolism , Epithelial Sodium Channels/metabolism , Protein Serine-Threonine Kinases/metabolism , Potassium, Dietary , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Immediate-Early Proteins/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Kidney/metabolism , Carrier Proteins/metabolism , Mice, Knockout , Ion Transport
3.
Sheng Li Xue Bao ; 76(1): 52-58, 2024 Feb 25.
Article in Zh | MEDLINE | ID: mdl-38444131

ABSTRACT

The depolarization-activated current of intercalated cells in the distal nephron was detected for the first time, and the type of ion channel mediating the current was identified based on electrophysiological and pharmacological properties. The whole-cell current of distal nephron in kidney of C57BL/6J mice was recorded by Axon MultiClamp 700B patch-clamp system, and the effects of several K+ channel inhibitors on the depolarization-activated current in intercalated cells were observed. In addition, the immunofluorescence technique was used to investigate the localization of the channel in intercalated cells. The results showed that when K+ concentration of the bath solution was equal to intracellular fluid (140 mmol/L K+), the depolarization-activated current could be recorded in intercalated cells, but this current was not observed in the principal cells. The depolarization-activated current detected in the intercalated cells could be blocked by Kv4.1 inhibitors. The immunofluorescence experiment showed that the fluorescence of Kv4.1 protein was only present in intercalated cells and not observed in principal cells. Kv4.1 protein immunofluorescence was observed in the luminal and basolateral membrane of intercalated cells, but the fluorescence intensity of luminal membrane was higher than that of basolateral membrane. We conclude that the depolarization-activated current detected in intercalated cells is mediated by Kv4.1 and this channel is mainly expressed in the luminal membrane of intercalated cells.


Subject(s)
Epithelial Cells , Kidney , Mice , Animals , Mice, Inbred C57BL , Cell Membrane
4.
Am J Physiol Renal Physiol ; 322(1): F55-F67, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34843409

ABSTRACT

We used whole cell recording to examine the renal outer medullary K+ channel (ROMK or Kir1.1) and epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2)/initial connecting tubule (iCNT) and in the cortical collecting duct (CCD) of kidney tubule-specific neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) knockout mice (Ks-Nedd4-2 KO) and floxed neural precursor cell-expressed developmentally downregulated 4-like (Nedd4l) mice (control). Tertiapin Q (TPNQ)-sensitive K+ currents (ROMK) were smaller in both the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on a normal diet than in control mice. Neither high dietary salt intake nor low dietary salt intake had a significant effect on ROMK activity in the DCT2/iCNT and CCD of control and Ks-Nedd4-2 KO mice. In contrast, high dietary K+ intake (HK) increased, whereas low dietary K+ intake (LK) decreased TPNQ-sensitive K+ currents in floxed Nedd4l mice. However, the effects of dietary K+ intake on ROMK channel activity were absent in Ks-Nedd4-2 KO mice since neither HK nor LK significantly affected TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD. Moreover, TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on HK were similar to those of control mice on LK. Amiloride-sensitive Na+ currents in the DCT2/iCNT and CCD were significantly higher in Ks-Nedd4-2 KO mice than in floxed Nedd4l mice on a normal K+ diet. HK increased ENaC activity of the DCT2/iCNT only in control mice, but HK stimulated ENaC of the CCD in both control and Ks-Nedd4-2 KO mice. Moreover, the HK-induced increase in amiloride-sensitive Na+ currents was larger in Ks-Nedd4-2 KO mice than in control mice. Deletion of Nedd4-2 increased with no lysine kinase 1 expression and abolished HK-induced inhibition of with no lysine kinase 1. We conclude that deletion of Nedd4-2 increases ENaC activity but decreases ROMK activity in the aldosterone-sensitive distal nephron and that HK fails to stimulate ROMK, but robustly increases ENaC activity in the CCD of Nedd4-2-deficient mice.NEW & NOTEWORTHY We demonstrate that renal outer medullary K+ (ROMK) channel activity is inhibited in the late distal convoluted tubule/initial connecting tubule and cortical collecting duct of neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2)-deficient mice. Also, deletion of Nedd4-2 abolishes the stimulatory effect of dietary K+ intake on ROMK. The lack of high K+-induced stimulation of ROMK is associated with the absence of high K+-induced inhibition of with no lysine kinase 1.


Subject(s)
Aldosterone/pharmacology , Kidney Tubules, Distal/drug effects , Nedd4 Ubiquitin Protein Ligases/deficiency , Potassium Channels, Inwardly Rectifying/metabolism , Potassium, Dietary/metabolism , Animals , Diet, Sodium-Restricted , Epithelial Sodium Channels/metabolism , Kidney Tubules, Distal/metabolism , Male , Membrane Potentials , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/genetics , Sodium Chloride, Dietary/metabolism
5.
Curr Opin Nephrol Hypertens ; 31(5): 479-485, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35894283

ABSTRACT

PURPOSE OF REVIEW: Kir5.1 interacts with Kir4.2 in proximal tubule and with Kir4.1 in distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD) to form basolateral-K+-channels. Kir4.2/Kir5.1 and Kir4.1/Kir5.1 play an important role in regulating Na+/HCO3--transport of the proximal tubule and Na+/K+ -transport in the DCT/CNT/CCD. The main focus of this review is to provide an overview of the recent development in the field regarding the role of Kir5.1 regulating renal electrolyte transport in the proximal tubule and DCT. RECENT FINDINGS: Loss-of-function-mutations of KCNJ16 cause a new form of tubulopathy, characterized by hypokalaemia, Na+-wasting, acid-base-imbalance and metabolic-acidosis. Abnormal bicarbonate transport induced by loss-of-function of KCNJ16-mutants is recapitulated in Kir4.2-knockout-(Kir4.2 KO) mice. Deletion of Kir5.1 also abolishes the effect of dietary Na+ and K+-intakes on the basolateral membrane voltage and NCC expression/activity. Long-term high-salt intake or high-K+-intake causes hyperkalaemic in Kir5.1-deficient mice. SUMMARY: Kir4.2/Kir5.1 activity in the proximal tubule plays a key role in regulating Na+, K+ and bicarbonate-transport through regulating electrogenic-Na+-bicarbonate-cotransporter-(NBCe1) and type 3-Na+/H+-exchanger-(NHE3). Kir4.1/Kir5.1 activity of the DCT plays a critical role in mediating the effect of dietary-K+ and Na+-intakes on NCC activity/expression. As NCC determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), defective regulation of NCC during high-salt and high-K+ compromises renal K+ excretion and K+ homeostasis.


Subject(s)
Potassium Channels, Inwardly Rectifying , Animals , Bicarbonates/metabolism , Humans , Ion Transport/physiology , Kidney Tubules/metabolism , Kidney Tubules, Distal/metabolism , Mice , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Sodium/metabolism
6.
Am J Physiol Renal Physiol ; 321(1): F1-F11, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34029145

ABSTRACT

High-dietary K+ (HK) intake inhibits basolateral Kir4.1/Kir5.1 activity in the distal convoluted tubule (DCT), and HK-induced inhibition of Kir4.1/Kir5.1 is essential for HK-induced inhibition of NaCl cotransporter (NCC). Here, we examined whether neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) deletion compromises the effect of HK on basolateral Kir4.1/Kir5.1 and NCC in the DCT. Single-channel recording and whole cell recording showed that neither HK decreased nor low-dietary K+ (LK) increased basolateral Kir4.1/Kir5.1 activity of the DCT in kidney tubule-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. In contrast, HK inhibited and LK increased Kir4.1/Kir5.1 activity in control mice [neural precursor cell expressed developmentally downregulated 4-like (Nedd4l)flox/flox]. Also, HK intake decreased the negativity of K+ current reversal potential in the DCT (depolarization) only in control mice but not in Ks-Nedd4-2 KO mice. Renal clearance experiments showed that HK intake decreased, whereas LK intake increased, hydrochlorothiazide-induced renal Na+ excretion only in control mice, but this effect was absent in Ks-Nedd4-2 KO mice. Western blot analysis also demonstrated that HK-induced inhibition of phosphorylated NCC (Thr53) and total NCC was observed only in control mice but not in Ks-Nedd4-2 KO mice. Furthermore, expression of all three subunits of the epithelial Na+ channel in Ks-Nedd4-2 KO mice on HK was higher than in control mice. Thus, plasma K+ concentrations were similar between Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HK for 7 days despite high NCC expression. We conclude that Nedd4-2 plays a role in regulating HK-induced inhibition of Kir4.1/Kir5.1 and NCC in the DCT.NEW & NOTEWORTHY Basolateral Kir4.1/Kir5.1 in the distal convoluted tubule plays an important role as a "K+ sensor" in the regulation of renal K+ excretion after high K+ intake. We found that neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) a role in mediating the effect of K+ diet on Kir4.1/Kir5.1 and NaCl cotransporter because high K+ intake failed to inhibit basolateral Kir4.1/Kir5.1 and NaCl cotransporter in kidney tubule-specific Nedd4-2 knockout mice.


Subject(s)
Kidney Tubules, Distal/metabolism , Nedd4 Ubiquitin Protein Ligases/deficiency , Potassium Channels, Inwardly Rectifying/metabolism , Solute Carrier Family 12, Member 3/metabolism , Animals , Biological Transport/physiology , Ion Transport/physiology , Mice , Mice, Knockout , Patch-Clamp Techniques/methods , Potassium Channels, Inwardly Rectifying/genetics , Solute Carrier Family 12, Member 3/genetics
7.
Am J Physiol Renal Physiol ; 320(5): F883-F896, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33818128

ABSTRACT

Neural precursor cell expressed developmentally downregulated protein 4-2 (Nedd4-2) regulates the expression of Kir4.1, thiazide-sensitive NaCl cotransporter (NCC), and epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN), and Nedd4-2 deletion causes salt-sensitive hypertension. We now examined whether Nedd4-2 deletion compromises the effect of high-salt (HS) diet on Kir4.1, NCC, ENaC, and renal K+ excretion. Immunoblot analysis showed that HS diet decreased the expression of Kir4.1, Ca2+-activated large-conductance K+ channel subunit-α (BKα), ENaCß, ENaCγ, total NCC, and phospho-NCC (at Thr53) in floxed neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4lfl/fl) mice, whereas these effects were absent in kidney-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. Renal clearance experiments also demonstrated that Nedd4-2 deletion abolished the inhibitory effect of HS diet on hydrochlorothiazide-induced natriuresis. Patch-clamp experiments showed that neither HS diet nor low-salt diet had an effect on Kir4.1/Kir5.1 currents of the distal convoluted tubule in Nedd4-2-deficient mice, whereas we confirmed that HS diet inhibited and low-salt diet increased Kir4.1/Kir5.1 activity in Nedd4lflox/flox mice. Nedd4-2 deletion increased ENaC currents in the ASDN, and this increase was more robust in the cortical collecting duct than in the distal convoluted tubule. Also, HS-induced inhibition of ENaC currents in the ASDN was absent in Nedd4-2-deficient mice. Renal clearance experiments showed that HS intake for 2 wk increased the basal level of renal K+ excretion and caused hypokalemia in Ks-Nedd4-2-KO mice but not in Nedd4lflox/flox mice. In contrast, plasma Na+ concentrations were similar in Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HS diet. We conclude that Nedd4-2 plays an important role in mediating the inhibitory effect of HS diet on Kir4.1, ENaC, and NCC and is essential for maintaining normal renal K+ excretion and plasma K+ ranges during long-term HS diet.NEW & NOTEWORTHY The present study suggests that Nedd4-2 is involved in mediating the inhibitory effect of high salt (HS) diet on Kir4.1/kir5.1 in the distal convoluted tubule, NaCl cotransporter function, and epithelial Na+ channel activity and that Nedd4-2 plays an essential role in maintaining K+ homeostasis in response to a long-term HS diet. This suggests the possibility that HS intake could lead to hypokalemia in subjects lacking proper Nedd4-2 E3 ubiquitin ligase activity in aldosterone-sensitive distal nephron.


Subject(s)
Epithelial Sodium Channels/metabolism , Hypokalemia/etiology , Nedd4 Ubiquitin Protein Ligases/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Sodium, Dietary/adverse effects , Animals , Anti-Bacterial Agents/pharmacology , Biological Transport , Doxycycline/pharmacology , Epithelial Sodium Channels/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Hypokalemia/chemically induced , Hypokalemia/genetics , Ion Transport/physiology , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/genetics , Nephrons/metabolism , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Sodium/metabolism , Sodium, Dietary/administration & dosage , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism
8.
Am J Physiol Renal Physiol ; 320(6): F1045-F1058, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33900854

ABSTRACT

High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.


Subject(s)
Potassium Channels, Inwardly Rectifying/metabolism , Sodium Chloride Symporters/metabolism , Sodium, Dietary/administration & dosage , Sodium, Dietary/pharmacology , Animals , Female , Gene Expression Regulation/drug effects , Kidney Tubules, Distal/drug effects , Kidney Tubules, Distal/metabolism , Male , Mice , Mice, Knockout , Neurons , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/genetics , Sodium Chloride Symporters/genetics
9.
J Am Soc Nephrol ; 31(6): 1226-1242, 2020 06.
Article in English | MEDLINE | ID: mdl-32295826

ABSTRACT

BACKGROUND: The potassium channel Kir4.1 forms the Kir4.1/Kir5.1 heterotetramer in the basolateral membrane of the distal convoluted tubule (DCT) and plays an important role in the regulation of the thiazide-sensitive NaCl cotransporter (NCC). Kidney-specific deletion of the ubiquitin ligase Nedd4-2 increases expression of NCC, and coexpression of Nedd4-2 inhibits Kir4.1/Kir5.1 in vitro. Whether Nedd4-2 regulates NCC expression in part by regulating Kir4.1/Kir5.1 channel activity in the DCT is unknown. METHODS: We used electrophysiology studies, immunoblotting, immunostaining, and renal clearance to examine Kir4.1/Kir5.1 activity in the DCT and NCC expression/activity in wild-type mice and mice with kidney-specific knockout of Nedd4-2, Kir4.1, or both. RESULTS: Deletion of Nedd4-2 increased the activity/expression of Kir4.1 in the DCT and also, hyperpolarized the DCT membrane. Expression of phosphorylated NCC/total NCC and thiazide-induced natriuresis were significantly increased in the Nedd4-2 knockout mice, but these mice were normokalemic. Double-knockout mice lacking both Kir4.1/Kir5.1 and Nedd4-2 in the kidney exhibited increased expression of the epithelial sodium channel α-subunit, largely abolished basolateral potassium ion conductance (to a degree similar to that of kidney-specific Kir4.1 knockout mice), and depolarization of the DCT membrane. Compared with wild-type mice, the double-knockout mice displayed inhibited expression of phosphorylated NCC and total NCC and had significantly blunted thiazide-induced natriuresis as well as renal potassium wasting and hypokalemia. However, NCC expression/activity was higher in the double-knockout mice than in Kir4.1 knockout mice. CONCLUSIONS: Nedd4-2 regulates Kir4.1/Kir5.1 expression/activity in the DCT and modulates NCC expression by Kir4.1-dependent and Kir4.1-independent mechanisms. Basolateral Kir4.1/Kir5.1 activity in the DCT partially accounts for the stimulation of NCC activity/expression induced by deletion of Nedd4-2.


Subject(s)
Kidney Tubules, Distal/metabolism , Nedd4 Ubiquitin Protein Ligases/physiology , Potassium Channels, Inwardly Rectifying/physiology , Sodium Chloride Symporters/physiology , Thiazides/pharmacology , Animals , Epithelial Sodium Channels/physiology , Mice , Mice, Knockout
10.
Am J Physiol Renal Physiol ; 318(6): F1369-F1376, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32308018

ABSTRACT

Cytochrome P-450 (Cyp) epoxygenase-dependent metabolites of arachidonic acid (AA) have been shown to inhibit renal Na+ transport, and inhibition of Cyp-epoxygenase is associated with salt-sensitive hypertension. We used the patch-clamp technique to examine whether Cyp-epoxygenase-dependent AA metabolites inhibited the basolateral 40-pS K+ channel (Kir4.1/Kir5.1) in the distal convoluted tubule (DCT). Application of AA inhibited the basolateral 40-pS K+ channel in the DCT. The inhibitory effect of AA on the 40-pS K+ channel was specific because neither linoleic nor oleic acid was able to mimic the effect of AA on the K+ channel. Inhibition of Cyp-monooxygenase with N-methylsulfonyl-12,12-dibromododec-11-enamide or inhibition of cyclooxygenase with indomethacin failed to abolish the inhibitory effect of AA on the 40-pS K+ channel. However, the inhibition of Cyp-epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide abolished the effect of AA on the 40-pS K+ channel in the DCT. Moreover, addition of either 11,12-epoxyeicosatrienoic acid (EET) or 14,15-EET also inhibited the 40-pS K+ channel in the DCT. Whole cell recording demonstrated that application of AA decreased, whereas N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide treatment increased, Ba2+-sensitive K+ currents in the DCT. Finally, application of 14,15-EET but not AA was able to inhibit the basolateral 40-pS K+ channel in the DCT of Cyp2c44-/- mice. We conclude that Cyp-epoxygenase-dependent AA metabolites inhibit the basolateral Kir4.1/Kir5.1 in the DCT and that Cyp2c44-epoxygenase plays a role in the regulation of the basolateral K+ channel in the mouse DCT.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Arachidonic Acid/pharmacology , Cytochrome P450 Family 2/metabolism , Kidney Tubules, Distal/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/metabolism , 8,11,14-Eicosatrienoic Acid/pharmacology , Amides/pharmacology , Animals , Arachidonic Acid/metabolism , Cytochrome P450 Family 2/antagonists & inhibitors , Cytochrome P450 Family 2/genetics , Enzyme Inhibitors/pharmacology , Kidney Tubules, Distal/metabolism , Male , Membrane Potentials , Mice, 129 Strain , Mice, Knockout , Potassium Channel Blockers/metabolism , Potassium Channels, Inwardly Rectifying/metabolism
12.
Acta Physiol (Oxf) ; : e14189, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860527

ABSTRACT

Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.

13.
Hypertension ; 81(1): 126-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37909221

ABSTRACT

BACKGROUND: Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively. METHODS: We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to examine whether renal AT1aR regulates Kir4.2 and Kir4.1. RESULTS: Ks-AT1aR-KO mice had a lower systolic blood pressure than Agtr1aflox/flox (control) mice. Ks-AT1aR-KO mice had a lower expression of NHE3 (Na+/H+-exchanger 3) and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell recording also demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of DCT and DCT membrane potential in Ks-AT1aR-KO mice, were similar to Agtr1aflox/flox mice. However, angiotensin II perfusion for 7 days hyperpolarized the membrane potential in PT and DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin II perfusion did not change the expression of Kir4.1, Kir4.2, and Kir5.1. Deletion of AT1aR did not significantly affect the expression of αENaC (epithelial Na+ channel) and ßENaC but increased cleaved γENaC expression. Patch-clamp experiments demonstrated that deletion of AT1aR increased amiloride-sensitive Na+-currents in the cortical-collecting duct but not in late-DCT. However, tertiapin-Q sensitive renal outer medullary potassium channel currents were similar in both genotypes. CONCLUSIONS: AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 expression/activity but AT1aR is not required for determining the baseline membrane potential of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin II-induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no effect on baseline renal outer medullary potassium channel activity but increased ENaC activity in the CCD.


Subject(s)
Potassium Channels, Inwardly Rectifying , Receptor, Angiotensin, Type 1 , Animals , Mice , Angiotensin II/pharmacology , Angiotensin II/metabolism , Kidney Tubules/metabolism , Kidney Tubules, Distal/metabolism , Mice, Knockout , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Sodium/metabolism , Epithelial Sodium Channels
14.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-36821372

ABSTRACT

We examine whether calcineurin or protein phosphatase 2B (PP2B) regulates the basolateral inwardly rectifying potassium channel Kir4.1/Kir5.1 in the distal convoluted tubule (DCT). Application of tacrolimus (FK506) or cyclosporine A (CsA) increased whole-cell Kir4.1/Kir5.1-mediated K+ currents and hyperpolarized the DCT membrane. Moreover, FK506-induced stimulation of Kir4.1/Kir5.1 was absent in kidney tubule-specific 12 kDa FK506-binding protein-knockout mice (Ks-FKBP-12-KO). In contrast, CsA stimulated Kir4.1/Kir5.1 of the DCT in Ks-FKBP-12-KO mice, suggesting that FK506-induced stimulation of Kir4.1/Kir5.1 was due to inhibiting PP2B. Single-channel patch-clamp experiments demonstrated that FK506 or CsA stimulated the basolateral Kir4.1/Kir5.1 activity of the DCT, defined by NPo (a product of channel number and open probability). However, this effect was absent in the DCT treated with Src family protein tyrosine kinase (SFK) inhibitor or hydroxyl peroxide. Fluorescence imaging demonstrated that CsA treatment increased membrane staining intensity of Kir4.1 in the DCT of Kcnj10fl/fl mice. Moreover, CsA treatment had no obvious effect on phosphorylated NaCl cotransporter (pNCC) expression in Ks-Kir4.1-KO mice. Immunoblotting showed acute FK506 treatment increased pNCC expression in Kcnj10fl/fl mice, but this effect was attenuated in Ks-Kir4.1-KO mice. In vivo measurement of thiazide-induced renal Na+ excretion demonstrated that FK506 enhanced thiazide-induced natriuresis. This effect was absent in Ks-FKBP-12-KO mice and blunted in Ks-Kir4.1-KO mice. We conclude that inhibition of PP2B stimulates Kir4.1/Kir5.1 of the DCT and NCC and that PP2B inhibition-induced stimulation of NCC is partially achieved by stimulation of the basolateral Kir4.1/Kir5.1.


Subject(s)
Calcineurin Inhibitors , Sodium Chloride , Animals , Mice , Solute Carrier Family 12, Member 3/metabolism , Calcineurin Inhibitors/pharmacology , Sodium Chloride/metabolism , Tacrolimus/pharmacology , Tacrolimus Binding Protein 1A/metabolism , Mice, Knockout , Thiazides
15.
Hypertension ; 79(7): 1423-1434, 2022 07.
Article in English | MEDLINE | ID: mdl-35506380

ABSTRACT

BACKGROUND: MR (mineralocorticoid receptor) antagonists are recommended for patients with resistant hypertension even when circulating aldosterone levels are not high. Although aldosterone activates MR to increase epithelial sodium channel (ENaC) activity, glucocorticoids also activate MR but are metabolized by 11ßHSD2 (11ß-hydroxysteroid dehydrogenase type 2). 11ßHSD2 is expressed at increasing levels from distal convoluted tubule (DCT) through collecting duct. Here, we hypothesized that MR maintains ENaC activity in the DCT2 and early connecting tubule in the absence of aldosterone. METHODS: We studied AS (aldosterone synthase)-deficient (AS-/-) mice, which were backcrossed onto the same C57BL6/J strain as kidney-specific MR knockout (KS-MR-/-) mice. KS-MR-/- mice were used to compare MR expression and ENaC localization and cleavage with AS-/- mice. RESULTS: MR was highly expressed along DCT2 through the cortical collecting duct (CCD), whereas no 11ßHSD2 expression was observed along DCT2. MR signal and apical ENaC localization were clearly reduced along both DCT2 and CCD in KS-MR-/- mice but were fully preserved along DCT2 and were partially reduced along CCD in AS-/- mice. Apical ENaC localization and ENaC currents were fully preserved along DCT2 in AS-/- mice and were not increased along CCD after low salt. AS-/- mice exhibited transient Na+ wasting under low-salt diet, but administration of the MR antagonist eplerenone to AS-/- mice led to hyperkalemia and decreased body weight with higher Na+ excretion, mimicking the phenotype of MR-/- mice. CONCLUSIONS: Our results provide evidence that MR is activated in the absence of aldosterone along DCT2 and partially CCD, suggesting glucocorticoid binding to MR preserves sodium homeostasis along DCT2 in AS-/- mice.


Subject(s)
Aldosterone , Kidney Tubules, Collecting , Aldosterone/metabolism , Aldosterone/pharmacology , Animals , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Humans , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Distal/metabolism , Mice , Mineralocorticoid Receptor Antagonists/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Natriuresis , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Sodium/metabolism
16.
Front Physiol ; 13: 1039029, 2022.
Article in English | MEDLINE | ID: mdl-36439248

ABSTRACT

Basolateral potassium channels in the distal convoluted tubule (DCT) are composed of inwardly-rectifying potassium channel 4.1 (Kir4.1) and Kir5.1. Kir4.1 interacts with Kir5.1 to form a 40 pS K+ channel which is the only type K+ channel expressed in the basolateral membrane of the DCT. Moreover, Kir4.1/Kir5.1 heterotetramer plays a key role in determining the expression and activity of thiazide-sensitive Na-Cl cotransport (NCC). In addition to Kir4.1/Kir5.1, Kir1.1 (ROMK) is expressed in the apical membrane of the late DCT (DCT2) and plays a key role in mediating epithelial Na+ channel (ENaC)-dependent K+ excretion. High dietary-K+-intake (HK) stimulates ROMK and inhibits Kir4.1/Kir5.1 in the DCT. Inhibition of Kir4.1/Kir5.1 is essential for HK-induced suppression of NCC whereas the stimulation of ROMK is important for increasing ENaC-dependent K+ excretion during HK. We have now used the patch-clamp-technique to examine whether gender and Cl- content of K+-diet affect HK-induced inhibition of basolateral Kir4.1/Kir5.1 and HK-induced stimulation of ROMK. Single-channel-recording shows that basolateral 40 pS K+ channel (Kir4.1/Kir5.1) activity of the DCT defined by NPo was 1.34 (1% KCl, normal K, NK), 0.95 (5% KCl) and 1.03 (5% K+-citrate) in male mice while it was 1.47, 1.02 and 1.05 in female mice. The whole-cell recording shows that Kir4.1/Kir5.1-mediated-K+ current of the early-DCT (DCT1) was 1,170 pA (NK), 725 pA (5% KCl) and 700 pA (5% K+-citrate) in male mice whereas it was 1,125 pA, 674 pA and 700 pA in female mice. Moreover, K+-currents (IK) reversal potential of DCT (an index of membrane potential) was -63 mV (NK), -49 mV (5% KCl) and -49 mV (5% K-citrate) in the male mice whereas it was -63 mV, -50 mV and -50 mV in female mice. Finally, TPNQ-sensitive whole-cell ROMK-currents in the DCT2 /initial-connecting tubule (CNT) were 910 pA (NK), 1,520 pA (5% KCl) and 1,540 pA (5% K+-citrate) in male mice whereas the ROMK-mediated K+ currents were 1,005 pA, 1,590 pA and 1,570 pA in female mice. We conclude that the effect of HK intake on Kir4.1/Kir5.1 of the DCT and ROMK of DCT2/CNT is similar between male and female mice. Also, Cl- content in HK diets has no effect on HK-induced inhibition of Kir4.1/Kir5.1 of the DCT and HK-induced stimulation of ROMK in DCT2/CNT.

20.
J Am Heart Assoc ; 9(7): e014996, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32208832

ABSTRACT

Background Angiotensin II stimulates epithelial Na+ channel (ENaC) by aldosterone-independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild-type (WT) and kidney-specific mineralocorticoid receptor knockout mice (KS-MR-KO). Methods and Results We used electrophysiological, immunoblotting and renal-clearance methods to examine the effect of angiotensin II on ENaC in KS-MR-KO and wild-type mice. High K+ intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K+ and low sodium intake on ENaC, partially inhibited ENaC in DCT2/CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild-type and KS-MR-KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR-independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS-MR-KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS-MR-KO mice; (3) angiotensin II infusion augmented benzamil-induced natriuresis, increased the renal K+ excretion and corrected hyperkalemia of KS-MR-KO mice. Conclusions Angiotensin II-induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.


Subject(s)
Angiotensin II/pharmacology , Epithelial Sodium Channels/metabolism , Kidney Tubules, Collecting/drug effects , Kidney Tubules, Distal/drug effects , Receptor, Angiotensin, Type 1/agonists , Receptors, Mineralocorticoid/deficiency , Animals , Hyperkalemia/drug therapy , Hyperkalemia/genetics , Hyperkalemia/metabolism , Hyperkalemia/physiopathology , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/physiopathology , Kidney Tubules, Distal/metabolism , Kidney Tubules, Distal/physiopathology , Membrane Potentials , Mice, Knockout , Natriuresis/drug effects , Potassium/urine , Receptor, Angiotensin, Type 1/metabolism , Receptors, Mineralocorticoid/genetics , Renal Elimination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL