Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34849569

ABSTRACT

There is great interest to develop artificial intelligence-based protein-ligand binding affinity models due to their immense applications in drug discovery. In this paper, PointNet and PointTransformer, two pointwise multi-layer perceptrons have been applied for protein-ligand binding affinity prediction for the first time. Three-dimensional point clouds could be rapidly generated from PDBbind-2016 with 3772 and 11 327 individual point clouds derived from the refined or/and general sets, respectively. These point clouds (the refined or the extended set) were used to train PointNet or PointTransformer, resulting in protein-ligand binding affinity prediction models with Pearson correlation coefficients R = 0.795 or 0.833 from the extended data set, respectively, based on the CASF-2016 benchmark test. The analysis of parameters suggests that the two deep learning models were capable to learn many interactions between proteins and their ligands, and some key atoms for the interactions could be visualized. The protein-ligand interaction features learned by PointTransformer could be further adapted for the XGBoost-based machine learning algorithm, resulting in prediction models with an average Rp of 0.827, which is on par with state-of-the-art machine learning models. These results suggest that the point clouds derived from PDBbind data sets are useful to evaluate the performance of 3D point clouds-centered deep learning algorithms, which could learn atomic features of protein-ligand interactions from natural evolution or medicinal chemistry and thus have wide applications in chemistry and biology.


Subject(s)
Deep Learning , Artificial Intelligence , Cloud Computing , Ligands , Protein Binding
2.
Microb Cell Fact ; 23(1): 128, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704580

ABSTRACT

BACKGROUND: Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS: In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS: Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.


Subject(s)
Anthraquinones , Enediynes , Metabolic Engineering , Streptomyces , Streptomyces/metabolism , Streptomyces/genetics , Metabolic Engineering/methods , Anthraquinones/metabolism , Enediynes/metabolism , Multigene Family , Biosynthetic Pathways
3.
Appl Microbiol Biotechnol ; 108(1): 18, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38170317

ABSTRACT

Exploration of high-yield mechanism is important for further titer improvement of valuable antibiotics, but how to achieve this goal is challenging. Tiancimycins (TNMs) are anthraquinone-fused enediynes with promising drug development potentials, but their prospective applications are limited by low titers. This work aimed to explore the intrinsic high-yield mechanism in previously obtained TNMs high-producing strain Streptomyces sp. CB03234-S for the further titer amelioration of TNMs. First, the typical ribosomal RpsL(K43N) mutation in CB03234-S was validated to be merely responsible for the streptomycin resistance but not the titer improvement of TNMs. Subsequently, the combined transcriptomic, pan-genomic and KEGG analyses revealed that the significant changes in the carbon and amino acid metabolisms could reinforce the metabolic fluxes of key CoA precursors, and thus prompted the overproduction of TNMs in CB03234-S. Moreover, fatty acid metabolism was considered to exert adverse effects on the biosynthesis of TNMs by shunting and reducing the accumulation of CoA precursors. Therefore, different combinations of relevant genes were respectively overexpressed in CB03234-S to strengthen fatty acid degradation. The resulting mutants all showed the enhanced production of TNMs. Among them, the overexpression of fadD, a key gene responsible for the first step of fatty acid degradation, achieved the highest 21.7 ± 1.1 mg/L TNMs with a 63.2% titer improvement. Our studies suggested that comprehensive bioinformatic analyses are effective to explore metabolic changes and guide rational metabolic reconstitution for further titer improvement of target products. KEY POINTS: • Comprehensive bioinformatic analyses effectively reveal primary metabolic changes. • Primary metabolic changes cause precursor enrichment to enhance TNMs production. • Strengthening of fatty acid degradation further improves the titer of TNMs.


Subject(s)
Anti-Bacterial Agents , Streptomyces , Anti-Bacterial Agents/metabolism , Streptomyces/metabolism , Streptomycin/pharmacology , Gene Expression Profiling , Fatty Acids/metabolism , Metabolic Engineering/methods
4.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731473

ABSTRACT

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Subject(s)
Multigene Family , Peptide Synthases , Polyketide Synthases , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Streptomyces/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Peptide Synthases/metabolism , Peptide Synthases/genetics , Peptide Synthases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
5.
J Nat Prod ; 86(7): 1870-1877, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37462318

ABSTRACT

A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure-activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.


Subject(s)
Streptomyces , Gene Silencing , Lipids , Streptomyces/chemistry , Cinnamates/chemistry
6.
Molecules ; 28(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37110828

ABSTRACT

Lobophorins (LOBs) are a growing family of spirotetronate natural products with significant cytotoxicity, anti-inflammatory, and antibacterial activities. Herein, we report the transwell-based discovery of Streptomyces sp. CB09030 from a panel of 16 in-house Streptomyces strains, which has significant anti-mycobacterial activity and produces LOB A (1), LOB B (2), and LOB H8 (3). Genome sequencing and bioinformatic analyses revealed the potential biosynthetic gene cluster (BGC) for 1-3, which is highly homologous with the reported BGCs for LOBs. However, the glycosyltransferase LobG1 in S. sp. CB09030 has certain point mutations compared to the reported LobG1. Finally, LOB analogue 4 (O-ß-D-kijanosyl-(1→17)-kijanolide) was obtained through an acid-catalyzed hydrolysis of 2. Compounds 1-4 showed different antibacterial activities against Mycobacterium smegmatis and Bacillus subtilis, which revealed the varying roles of different sugars in their antibacterial activities.


Subject(s)
Streptomyces , Streptomyces/chemistry , Macrolides/chemistry , Anti-Bacterial Agents/chemistry , Base Sequence , Multigene Family
7.
J Antimicrob Chemother ; 77(10): 2840-2849, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35848795

ABSTRACT

OBJECTIVES: The rapid development of drug-resistant bacteria, especially MRSA, poses severe threats to global public health. Adoption of antibiotic adjuvants has proved to be one of the efficient ways to solve such a crisis. Platensimycin and surfactin were comprehensively studied to combat prevalent MRSA skin infection. METHODS: MICs of platensimycin, surfactin or their combinations were determined by resazurin assay, while the corresponding MBCs were determined by chequerboard assay. Growth inhibition curves and biofilm inhibition were determined by OD measurements. Membrane permeability analysis was conducted by propidium iodide staining, and morphological characterizations were performed by scanning electron microscopy. Finally, the therapeutic effects on MRSA skin infections were evaluated in scald-model mice. RESULTS: The in vitro assays indicated that surfactin could significantly improve the antibacterial performance of platensimycin against MRSA, especially the bactericidal activity. Subsequent mechanistic studies revealed that surfactin not only interfered with the biofilm formation of MRSA, but also disturbed their cell membranes to enhance membrane permeability, and therefore synergistically ameliorated MRSA cellular uptake of platensimycin. Further in vivo assessment validated the synergistic effect of surfactin on platensimycin and the resultant enhancement of therapeutical efficacy in MRSA skin-infected mice. CONCLUSIONS: The combination of effective and biosafe surfactin and platensimycin could be a promising and efficient treatment for MRSA skin infection, which could provide a feasible solution to combat the major global health threats caused by MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Skin Diseases, Infectious , Adamantane , Aminobenzoates , Anilides , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cellulitis/drug therapy , Lipopeptides/pharmacology , Mice , Microbial Sensitivity Tests , Propidium/metabolism , Propidium/pharmacology
8.
Mol Pharm ; 19(11): 4370-4381, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36251509

ABSTRACT

There is strong interest to develop affordable treatments for the infection-associated rheumatoid arthritis (RA). Here, we present a drug-drug co-amorphous strategy against RA and the associated bacterial infection by the preparation and characterization of two co-amorphous systems of sinomenine (SIN) with platensimycin (PTM) or sulfasalazine (SULF), two potent antibiotics. Both of them were comprehensively characterized using powder X-ray diffraction, temperature-modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The co-amorphous forms of SIN-PTM and SIN-SULF exhibited high Tgs at 139.10 ± 1.0 and 153.3 ± 0.2 °C, respectively. After 6 months of accelerated tests and 1 month of drug-excipient compatibility experiments, two co-amorphous systems displayed satisfactory physical stability. The formation of salt and strong intermolecular interactions between SIN and PTM or SULF, as well as the decreased molecular mobility in co-amorphous systems, may be the intrinsic mechanisms underlying the excellent physical stability of both co-amorphous systems. In dissolution tests, two co-amorphous systems displayed distinct reduced SIN-accumulative releases (below 20% after 6 h of release experiments), which may lead to its poor therapeutic effect. Hence, we demonstrated a controlled release strategy for SIN by the addition of a small percentage of polymers and a small-molecule surfactant to these two co-amorphous samples as convenient drug excipients, which may also be used to improve the unsatisfactory dissolution behaviors of the previously reported SIN co-amorphous systems. Several hydrogen bonding interactions between SIN and PTM or SULF could be identified in NMR experiments in DMSO-d6, which may be underlying reasons of decreased dissolution behaviors of both co-amorphous forms. These drug-drug co-amorphous systems could be a potential strategy for the treatment of infection-associated RA.


Subject(s)
Excipients , Sulfasalazine , Excipients/chemistry , Drug Stability , Solubility , Calorimetry, Differential Scanning , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
9.
Mol Pharm ; 19(4): 1078-1090, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35290067

ABSTRACT

Enediyne natural products, including neocarzinostatin and calicheamicin γ1, are used in the form of a copolymer or antibody-drug conjugate to treat hepatomas and leukemia. Tiancimycin (TNM) A is a novel anthraquinone-fused enediyne that can rapidly and completely kill tumor cells. Herein, we encapsulated TNM A in liposomes (Lip-TNM A) and cyclic arginine-glycine-aspartate (cRGD)-functionalized liposomes (cRGD-Lip-TNM A) and demonstrated its antitumor activity using mouse xenografts. Because TNM A causes rapid DNA damage, cell cycle arrest, and apoptosis, these nanoparticles exhibited potent cytotoxicity against multiple tumor cells for 8 h. In B16-F10 and KPL-4 xenografts, both nanoparticles showed superior potency over doxorubicin and trastuzumab. However, cRGD-Lip-TNM A reduced the tumor weight more significantly than Lip-TNM A in B16-F10 xenografts, in which the αvß3-integrin receptors are significantly overexpressed in this melanoma. Lip-TNM A was slightly more active than cRGD-Lip-TNM A against KPL-4 xenografts, which probably reflected the difference of their in vivo fate in this mouse model. In a highly metastatic 4T1 tumor model, cRGD-Lip-TNM A reduced tumor metastasis induced by losartan, a tumor microenvironment-remodeling agent. These findings suggest that targeted delivery of enediynes with unique modes of action may enable more effective translation of anticancer nanomedicines.


Subject(s)
Breast Neoplasms , Melanoma , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Enediynes , Female , Humans , Liposomes , Melanoma/drug therapy , Mice , Tumor Microenvironment
10.
Microb Cell Fact ; 21(1): 188, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088456

ABSTRACT

BACKGROUND: The anthraquinone-fused 10-membered enediynes (AFEs), represented by tiancimycins (TNMs), possess a unique structural feature and promising potentials as payloads of antitumor antibody-drug conjugates. Despite many efforts, the insufficient yields remain a practical challenge for development of AFEs. Recent studies have suggested a unified basic biosynthetic route for AFEs, those core genes involved in the formation of essential common AFE intermediates, together with multiple regulatory genes, are highly conserved among the reported biosynthetic gene clusters (BGCs) of AFEs. The extreme cytotoxicities of AFEs have compelled hosts to evolve strict regulations to control their productions, but the exact roles of related regulatory genes are still uncertain. RESULTS: In this study, the genetic validations of five putative regulatory genes present in the BGC of TNMs revealed that only three (tnmR1, tnmR3 and tnmR7) of them were involved in the regulation of TNMs biosynthesis. The bioinformatic analysis also revealed that they represented three major but distinct groups of regulatory genes conserved in all BGCs of AFEs. Further transcriptional analyses suggested that TnmR7 could promote the expressions of core enzymes TnmD/G and TnmN/O/P, while TnmR3 may act as a sensor kinase to work with TnmR1 and form a higher class unconventional orphan two-component regulatory system, which dynamically represses the expressions of TnmR7, core enzymes TnmD/G/J/K1/K2 and auxiliary proteins TnmT2/S2/T1/S1. Therefore, the biosynthesis of TNMs was stringently restricted by this cascade regulatory network at early stage to ensure the normal cell growth, and then partially released at the stationary phase for product accumulation. CONCLUSION: The pathway-specific cascade regulatory network consisting with TnmR3/R1 and TnmR7 was deciphered to orchestrate the production of TNMs. And it could be speculated as a common regulatory mechanism for productions of AFEs, which shall provide us new insights in future titer improvement of AFEs and potential dynamic regulatory applications in synthetic biology.


Subject(s)
Streptomyces , Enediynes/chemistry , Enediynes/metabolism , Genes, Regulator , Multigene Family , Proteins/metabolism , Streptomyces/genetics , Streptomyces/metabolism
11.
Org Biomol Chem ; 20(25): 5066-5070, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35703354

ABSTRACT

Three siderophores mirubactins B-D (4-6) were identified as the degradation products of previously isolated mirubactin (1). Their structures were revealed by HR-ESI-MS/MS, NMR analyses, and density functional calculations, among which 4 contains an unusual cyclic amidine functionality. Cyclic voltammetry showed that 5 and 6 have reduced iron complexing capacity. Mirubactin (1) and Fe(III) could also form a stable complex, which may be an ingenious approach to compete for iron acquisition by the producing organisms.


Subject(s)
Ferric Compounds , Siderophores , Ferric Compounds/chemistry , Hydroxamic Acids , Iron , Siderophores/chemistry , Tandem Mass Spectrometry
12.
J Am Chem Soc ; 143(49): 20579-20584, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34851100

ABSTRACT

Metals play essential roles in life by coordination with small molecules, proteins, and nucleic acids. Although the coordination of copper ions in many proteins and methanobactins is known, the coordination chemistry of Cu(II) in natural products and their biological functions remain underexplored. Herein, we report the discovery of a Cu(II)-binding natural product, chalkophomycin (CHM, 1), from Streptomyces sp. CB00271, featuring an asymmetric square-coordination system of a bidentate diazeniumdiolate and a conjugated 1H-pyrrole 1-oxide-oxazoline. The structure of 1 may inspire the synthesis of Cu(II) chelators against neurodegenerative diseases or Cu(II)-based antitumor therapeutics.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Molecular Structure , Oxazoles/chemistry , Pyrrolidinones/chemistry
13.
Biotechnol Bioeng ; 118(6): 2243-2254, 2021 06.
Article in English | MEDLINE | ID: mdl-33629382

ABSTRACT

ß-rubromycin (ß-RUB) (1) is an efficient inhibitor of human telomerase possessing a unique spiroketal moiety as a potential pharmacophore and regarded as a promising anticancer drug lead. But the development of (ß-RUB) (1) has long been hampered by its low titer and very poor water solubility. By adopting a genome mining strategy, an FAD-dependent monooxygenase RubN involving with the formation of the spiro system was applied as the probe and Streptomyces sp. CB00271 was screened out from our strain collection as an alternative natural high producer of ß-RUB (1). After a series of fermentation optimizations, CB00271 could produce 124.8 ± 3.4 mg/L ß-RUB (1), which was the highest titer up to now. Moreover, the enhanced production of ß-RUB (1) in fermentation broth also led to the discovery of a new congener ß-RUB acid (7), which was structurally elucidated as the acid form of ß-RUB (1). Comparing to ß-RUB (1), the substituted carboxyl group endowed ß-RUB acid (7) much better solubility in serum and resulted in its higher activity towards tumor cells. Our work set up a solid base for the pilot-scale production of ß-RUB (1) and its congeners to facilitate their future development as promising anticancer drug leads, and also provide an alternative and practical strategy for the exploitation of other important microbial natural products.


Subject(s)
Antineoplastic Agents/metabolism , Quinones/metabolism , Streptomyces/genetics , Biological Products/metabolism , Cell Line, Tumor , Fermentation , Furans , Genome, Bacterial , Humans , Molecular Structure , Spiro Compounds , Streptomyces/metabolism
14.
Mol Pharm ; 18(11): 4099-4110, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34554755

ABSTRACT

Skin and soft tissue infections require effective and sustained topical administration. Platensimycin (PTM) is a natural drug lead that targets bacterial fatty acid synthases and has a great potential to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA). To facilitate the use of PTM against local MRSA infections, we prepared polyacrylamide hydrogels containing polyamidoamine (PAMAM)/PTM nanoparticles (NP-gel(PTM)) for the controlled release of PTM. NP-gel(PTM) can continuously inhibit the growth of MRSA and its biofilm formation in simulated drug flow models in vitro. In situ implantation of NP-gel(PTM) could treat MRSA-infected subcutaneous soft tissues without toxicity. For MRSA-infected skin wounds, NP-gel(PTM) not only showed strong anti-MRSA activity but also accelerated more wound healing than the widely used antibiotic mupirocin. Collectively, PTM is expected to be used in this safe and effective NP-gel delivery platform for the treatment of local infections, which might help to alleviate the current antibiotic resistance crisis.


Subject(s)
Adamantane/administration & dosage , Aminobenzoates/administration & dosage , Anilides/administration & dosage , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticle Drug Delivery System/chemistry , Staphylococcal Skin Infections/drug therapy , Wound Infection/drug therapy , Adamantane/pharmacokinetics , Aminobenzoates/pharmacokinetics , Anilides/pharmacokinetics , Animals , Biofilms/drug effects , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Disease Models, Animal , Drug Liberation , Humans , Hydrogels/chemistry , Male , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Mice , Microbial Sensitivity Tests , Polyamines/chemistry , Staphylococcal Skin Infections/microbiology , Wound Healing/drug effects , Wound Infection/microbiology
15.
Microb Cell Fact ; 20(1): 192, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34600534

ABSTRACT

BACKGROUND: Rubiginones belong to the angucycline family of aromatic polyketides, and they have been shown to potentiate the vincristine (VCR)-induced cytotoxicity against VCR-resistant cancer cell lines. However, the biosynthetic gene clusters (BGCs) and biosynthetic pathways for rubiginones have not been reported yet. RESULTS: In this study, based on bioinformatics analysis of the genome of Streptomyces sp. CB02414, we predicted the functions of the two type II polyketide synthases (PKSs) BGCs. The rub gene cluster was predicted to encode metabolites of the angucycline family. Scale-up fermentation of the CB02414 wild-type strain led to the discovery of eight rubiginones, including five new ones (rubiginones J, K, L, M, and N). Rubiginone J was proposed to be the final product of the rub gene cluster, which features extensive oxidation on the A-ring of the angucycline skeleton. Based on the production profiles of the CB02414 wild-type and the mutant strains, we proposed a biosynthetic pathway for the rubiginones in CB02414. CONCLUSIONS: A genome mining strategy enabled the efficient discovery of new rubiginones from Streptomyces sp. CB02414. Based on the isolated biosynthetic intermediates, a plausible biosynthetic pathway for the rubiginones was proposed. Our research lays the foundation for further studies on the mechanism of the cytochrome P450-catalyzed oxidation of angucyclines and for the generation of novel angucyclines using combinatorial biosynthesis strategies.


Subject(s)
Anthraquinones , Bacterial Proteins , Streptomyces , Anthraquinones/chemistry , Anthraquinones/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Biosynthetic Pathways , Multigene Family , Secondary Metabolism , Streptomyces/genetics , Streptomyces/metabolism
16.
J Org Chem ; 86(23): 16675-16683, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34709824

ABSTRACT

Huanglongmycin (HLM) congeners G-N (7-14) were isolated from Streptomyces sp. CB09001. Among them, 10-12 possesses a tricyclic scaffold with benzene-fused pyran/pyrone, confirmed by X-ray single crystal diffraction analysis of 12. The structure-activity relationship study of 1, 13, and 14 revealed not only the stronger cytotoxicity of 14 against tested cancer cells but also the critical role of the C-7 ethyl group of 14 in its binding to the DNA-topoisomerase I complex.


Subject(s)
Streptomyces , Topoisomerase I Inhibitors , Crystallography, X-Ray , Pyrones , Structure-Activity Relationship , Topoisomerase I Inhibitors/pharmacology
17.
Bioorg Med Chem Lett ; 48: 128270, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34284106

ABSTRACT

Adamantane has been widely used as a "lipophilic bullet" in drug discovery and development, due to its unique diamond-like architecture with benign pharmacological/ pharmaceutical properties. Platensimycin is a natural product isolated from a soil streptomycete, which contains an adamantane-like moiety extensively modified from a diterpenoid precursor. In the current study, platensic alcohol was semisynthesized from platensimycin and used as an adamantane surrogate in anticancer drug lead adaphostin. The resulting hybrid platensic alcohol/adaphostin compounds, eg. 4a and 4b, exhibited similar cytotoxic activity with adaphostin against the tested cancer cell lines. In particular, 4b generates significantly more reactive oxygen species (ROS) and shows stronger synergy with the clinically used histone deacetylase inhibitor vorinostat than adaphostin, probably due to the presence of two hydroquinone groups. Density functional theory calculation supports that there could be certain π-π stacking interaction in 4b in aqueous solution, which might explain that 4b has similar serum stability with adaphostin. Our study not only leads to the identification of 4b as a potent ROS generating agent, but showcases a simple scaffold hopping strategy to harvest lipophilic scaffolds from natural products.


Subject(s)
Adamantane/analogs & derivatives , Alcohols/chemistry , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydroquinones/pharmacology , Adamantane/chemical synthesis , Adamantane/chemistry , Adamantane/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Hydroquinones/chemical synthesis , Hydroquinones/chemistry , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
18.
Bioconjug Chem ; 31(5): 1425-1437, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32286051

ABSTRACT

Serious bacterial infections by multi-drug-resistant pathogens lead to human losses and endanger public health. The discovery of antibiotics with new modes of action, in combination with nanotechnology, might offer a promising route to combat multi-drug-resistant pathogens. Platensimycin (PTM), a potent inhibitor of FabB/FabF for bacterial fatty acid biosynthesis, is a promising drug lead against many drug-resistant bacteria. However, the clinical development of PTM is hampered by its poor pharmacokinetics. Herein, we report a nanostrategy that encapsulated PTM in two types of nanoparticles (NPs) poly(lactic-co-glycolic acid) (PLGA) and poly(amidoamine) (PAMAM) dendrimer to enhance its antibacterial activity in vitro and in vivo. The PTM-encapsulated NPs were effective to inhibit Staphylococcus aureus biofilm formation, and killed more S. aureus in a macrophage cell infection model over free PTM. The pharmacokinetic studies showed that PTM-loaded PLGA and PAMAM NPs exhibited increased AUC0-t (area under the curve) (∼4- and 2-fold) over free PTM. In a mouse peritonitis model, treatment of methicillin-resistant S. aureus infected mice using both PTM-loaded NPs (10 mg/kg) by intraperitoneal injection led to their full survival, while all infected mice died when treated by free PTM (10 mg/kg). These results not only suggest that PTM-loaded NPs may hold great potential to improve the poor pharmacokinetic properties of PTM, but support the rationale to develop bacterial fatty acid synthase inhibitors as promising antibiotics against drug-resistant pathogens.


Subject(s)
Adamantane/chemistry , Adamantane/pharmacology , Aminobenzoates/chemistry , Aminobenzoates/pharmacology , Anilides/chemistry , Anilides/pharmacology , Dendrimers/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Polyamines/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Adamantane/pharmacokinetics , Aminobenzoates/pharmacokinetics , Anilides/pharmacokinetics , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Carriers/chemistry , Methicillin-Resistant Staphylococcus aureus/physiology , Mice
19.
Mol Pharm ; 17(6): 2125-2134, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348151

ABSTRACT

The cationic glycopeptide bleomycin (BLM) is a broad-spectrum chemotherapy drug clinically applied to treat various malignant tumors. The poor cell membrane permeability of BLM, which is prone to high dose usage and may consequently induce dose-dependent lung toxicity, is a sticking point to limit clinical applications of BLM. As a commercial biosurfactant, the anionic lipopeptide surfactin (SF) is well known for its potent ability to disturb membranes and widely applied in cosmetic area as a permeabilization synergist. In this work, our in vitro investigations showed that SF could ameliorate the cell internalization of BLM, and the combined usage of SF notably improved the antitumor activity of BLM or its analogues while having no obvious effects on normal cells. Subsequent in vivo assessments on the subcutaneous treatment of A375 melanoma in mice demonstrated that SF could also enhance the therapeutic effects of BLM family compounds in subeffective doses, with no obvious toxicities on lungs and skin. Also, our preliminary results suggested the formation of complex micelles at the nanoscale by the self-assembly of BLM and SF, which may contribute to the ameliorated internalization and the antitumor effect of BLM. Therefore, SF could be applied as a potential synergist for BLM to reduce its treatment dose while maintaining the therapeutic effect on treatment of skin carcinoma, which provides us an alternative way to minimize the side effects of clinical BLM and facilitate the development of new BLM-type drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bleomycin/pharmacology , Bleomycin/therapeutic use , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Melanoma/drug therapy , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , A549 Cells , Animals , Female , Humans , Male , Melanoma/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Reactive Oxygen Species/metabolism
20.
Mol Pharm ; 17(7): 2451-2462, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32519867

ABSTRACT

Platensimycin (PTM) is a promising natural product drug lead against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), while the clinical development was hampered by problems related to its poor solubility and pharmacokinetic properties. In this study, we used liposomes and micelles as carriers of PTM to prepare PTM nanoformulations for the treatment of MRSA infection in mice. PTM-loaded nanoparticles could effectively reduce residual bacteria in the MRSA-infected macrophage cell model, comparing to free PTM. More importantly, in vivo studies showed that encapsulation of PTM by liposomes or micelles effectively improved the pharmacokinetic properties of PTM in Sprague-Dawley rats and the survival rate of MRSA-infected C57BL/6J mice. Our study has thus suggested that the clinically used nanocarriers, such as liposome and micelle, might also be useful to improve the efficacy of other natural product drug leads to accelerate their in vivo evaluation and preclinical development.


Subject(s)
Adamantane/administration & dosage , Adamantane/pharmacokinetics , Aminobenzoates/administration & dosage , Aminobenzoates/pharmacokinetics , Anilides/administration & dosage , Anilides/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Drug Delivery Systems/methods , Methicillin-Resistant Staphylococcus aureus/drug effects , Micelles , Nanocapsules/chemistry , Staphylococcal Infections/drug therapy , Adamantane/adverse effects , Aminobenzoates/adverse effects , Anilides/adverse effects , Animals , Anti-Bacterial Agents/adverse effects , Biofilms/drug effects , Cell Survival/drug effects , Drug Liberation , Liposomes , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/mortality , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL